Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus

  • Xiaojing Qiang
  • Junjun Ding
  • Wei Lin
  • Qiaozhen Li
  • Chunying Xu
  • Qian Zheng
  • Yuzhong LiEmail author
Regular Article


Background and aims

Endophytic fungi colonization is an eco-friendly strategy to respond to environmental stresses and confer tolerance to the host plant. Here, the responses of wheat plant inoculated with an indole acetic acid (IAA) -producing endophytic fungus to drought stress and water recovery were evaluated.


The inoculation of wheat plants with Alternaria alternata (LQ1230) was conducted to evaluate drought resistance under adequate water, water deficit and water recovery conditions by examining the growth parameters and various physiological indicators of wheat seedlings.


The LQ1230 isolated from Elymus dahuricus Turcz could secrete indole acetic acid (IAA) by both the tryptophan-dependent (319.24 ± 14.88 μg/mL) and independent (40.12 ± 8.59 μg/mL) pathways. LQ1230 inoculation enhanced wheat growth and drought tolerance through regulation of antioxidant enzyme activities and the content of compatible solutes such as soluble sugars and proline. Additionally, LQ1230 inoculated plants demonstrated significantly improved photosynthesis, C and N accumulation of wheat plants, leading to a positive relationship with plant dry biomass under water deficit and re-watering conditions.


We found that the improved wheat plant growth, photosynthesis and nutrient accumulations by the inoculation of Alternaria alternata LQ1230 might be attributed to the reprogramming of wheat plant metabolism, thus enhancing wheat drought tolerance. Inoculation with fungal endophytes such as LQ1230 has the potential to increase crop drought resistance.


Endophytic fungi Drought stress IAA Wheat Physiology parameters 



The authors would like to acknowledge the Institute of Grassland Research of CAAS for providing the Elymus dahuricus Turcz seeds and Xuan Xu for helpful comments and revision of the manuscript. This study was financially supported by the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences.

Supplementary material

11104_2019_4028_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2570 kb)


  1. Aebi H (1984) [13] Catalase in vitro. In: Methods in enzymology, vol 105. Elsevier, pp 121–126Google Scholar
  2. Asaf S, Khan MA, Khan AL, Waqas M, Shahzad R, Kim AY, Kang SM, Lee IJ (2017) Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: an example of Sphingomonas sp. and Serratia marcescens. J Plant Interact 12:31–38CrossRefGoogle Scholar
  3. Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295CrossRefGoogle Scholar
  4. Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in arabidopsis seedlings. Plant J 29:325–332CrossRefGoogle Scholar
  5. Buyer JS, Zuberer DA, Nichols KA, Franzluebbers AJ (2010) Soil microbial community function, structure, and glomalin in response to tall fescue endophyte infection. Plant Soil 339:401–412. CrossRefGoogle Scholar
  6. Chen Y, GUO S-D, XU J, CHEN Y-L, LI H-Y, QI X-H, MAO W-J (2010) Studies on exopolysaccharides from a marine endogenetic fungus of the sponge (Alternaria sp.)[J]. Periodical of Ocean University of China 5:004Google Scholar
  7. Chen T, Johnson R, Chen S, Lv H, Zhou J, Li C (2018) Infection by the fungal endophyte Epichloë bromicola enhances the tolerance of wild barley (Hordeum brevisubulatum) to salt and alkali stresses. Plant Soil:1–18Google Scholar
  8. Clay K, Holah J (1999) Fungal endophyte Symbiosis and plant diversity in successional fields. Science 285:1742–1744. CrossRefGoogle Scholar
  9. Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459CrossRefGoogle Scholar
  10. Dastogeer KMG, Wylie SJ (2017) Plant–Fungi association: role of fungal endophytes in improving plant tolerance to water stress. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: volume 1: fundamental mechanisms, methods and functions. Springer Singapore, Singapore, pp 143–159. CrossRefGoogle Scholar
  11. Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Du X, Ren Y, Wylie SJ (2017) Metabolic responses of endophytic Nicotiana benthamiana plants experiencing water stress. Environ Exp Bot 143:59–71CrossRefGoogle Scholar
  12. Devi KA, Pandey G, Rawat A, Sharma GD, Pandey P (2017) The endophytic symbiont—Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L Front Microbiol 8:1897Google Scholar
  13. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable Agriculture. Springer Netherlands, Dordrecht, pp 153–188. CrossRefGoogle Scholar
  14. Farooq M, Hussain M, Siddique KH (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349CrossRefGoogle Scholar
  15. Franzluebbers AJ (2006) Short-term responses of soil C and N fractions to tall fescue endophyte infection. Plant Soil 282:153–164. CrossRefGoogle Scholar
  16. Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY (2015) Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 10:e1048052. CrossRefGoogle Scholar
  17. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240. CrossRefGoogle Scholar
  18. Guler NS, Pehlivan N, Karaoglu SA, Guzel S, Bozdeveci A (2016) Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38:132CrossRefGoogle Scholar
  19. Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41. CrossRefGoogle Scholar
  20. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. CrossRefGoogle Scholar
  21. Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208CrossRefGoogle Scholar
  22. HongBo S, ZongSuo L, MingAn S (2005) Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids Surf B Biointerfaces 45:7–13. CrossRefGoogle Scholar
  23. Huang K, Zhong Y, Li Y, Zheng D, Cheng Z-M (2016) Genome-wide identification and expression analysis of the apple ASR gene family in response to Alternaria alternata f. sp. mali. Genome 59:866–878CrossRefGoogle Scholar
  24. Hubbard M, Germida J, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122CrossRefGoogle Scholar
  25. Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3CrossRefGoogle Scholar
  26. Khan AL, Shin J-H, Jung H-Y, Lee I-J (2014) Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions. Sci Hortic 175:167–173CrossRefGoogle Scholar
  27. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I-J (2015a) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74CrossRefGoogle Scholar
  28. Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH (2015b) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31:1461–1466CrossRefGoogle Scholar
  29. Khan AL, al-Harrasi A, al-Rawahi A, al-Farsi Z, al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ (2016) Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207CrossRefGoogle Scholar
  30. Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276. CrossRefGoogle Scholar
  31. Liu T, Sheng M, Wang C, Chen H, Li Z, Tang M (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53:250–258CrossRefGoogle Scholar
  32. Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334CrossRefGoogle Scholar
  33. Manici L, Kelderer M, Caputo F, Mazzola M (2015) Auxin-mediated relationships between apple plants and root inhabiting fungi: impact on root pathogens and potentialities of growth-promoting populations. Plant Pathol 64:843–851CrossRefGoogle Scholar
  34. Meena KK et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172CrossRefGoogle Scholar
  35. Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2018) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays Symbiosis.,
  36. Mona SA, Hashem A, Abd_Allah EF, Alqarawi AA, Soliman DWK, Wirth S, Egamberdieva D (2017) Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Integr Agric 16:1751–1757CrossRefGoogle Scholar
  37. Musetti R, Polizzotto R, Vecchione A, Borselli S, Zulini L, D’Ambrosio M, Toppi LS, Pertot I (2007) Antifungal activity of diketopiperazines extracted from Alternaria alternata against Plasmopara viticola: an ultrastructural study. Micron 38:643–650CrossRefGoogle Scholar
  38. Ortiz J, Soto J, Almonacid L, Fuentes A, Campos-Vargas R, Arriagada C (2019) Alleviation of metal stress by Pseudomonas orientalis and Chaetomium cupreum strains and their effects on Eucalyptus globulus growth promotion. Plant Soil.
  39. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801CrossRefGoogle Scholar
  40. Qiang X-j, Yu G-h, Jiang L-l, Sun L-l, Zhang S-h, Wei L, Cheng X-g (2015) Thellungiella halophila ThPIP1 gene enhances the tolerance of the transgenic rice to salt stress. J Integr Agric 14:1911–1922CrossRefGoogle Scholar
  41. Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433. CrossRefGoogle Scholar
  42. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340CrossRefGoogle Scholar
  43. Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302. CrossRefGoogle Scholar
  44. Shahabivand S, Parvaneh A, Aliloo AA (2017) Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol Environ Saf 145:496–502CrossRefGoogle Scholar
  45. Shahzad R, Khan AL, Bilal S, Asaf S, Lee I-J (2017a) Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. PeerJ 5:e3107CrossRefGoogle Scholar
  46. Shahzad R, Khan AL, Bilal S, Waqas M, Kang S-M, Lee I-J (2017b) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77CrossRefGoogle Scholar
  47. Shukla N, Awasthi R, Rawat L, Kumar J (2015) Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol 166:171–182CrossRefGoogle Scholar
  48. Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66:375–384CrossRefGoogle Scholar
  49. Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578CrossRefGoogle Scholar
  50. Spagnoletti F, Tobar N, Di Pardo AF, Chiocchio V, Lavado R (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32CrossRefGoogle Scholar
  51. Su Z-Z, Mao LJ, Li N, Feng XX, Yuan ZL, Wang LW, Lin FC, Zhang CL (2013) Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLoS One 8:e61332CrossRefGoogle Scholar
  52. Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017CrossRefGoogle Scholar
  53. Vergara C, Araujo KEC, Urquiaga S, Schultz N, Balieiro FC, Medeiros PS, Santos LA, Xavier GR, Zilli JE (2017) Dark septate endophytic Fungi help tomato to acquire nutrients from ground plant material. Front Microbiol 8:2437. CrossRefGoogle Scholar
  54. Wang Y, Yang M-H, Wang X-B, Li T-X, Kong L-Y (2014) Bioactive metabolites from the endophytic fungus Alternaria alternata. Fitoterapia 99:153–158. CrossRefGoogle Scholar
  55. Wang B, Seiler JR, Mei C (2016) A microbial endophyte enhanced growth of switchgrass under two drought cycles improving leaf level physiology and leaf development. Environ Exp Bot 122:100–108CrossRefGoogle Scholar
  56. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. CrossRefGoogle Scholar
  57. Wu H-H, Zou Y-N, Rahman MM, Ni Q-D, Wu Q-S (2017) Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci Rep 7Google Scholar
  58. Yan J, Broughton S, Yang S, Gange A (2015) Do endophytic fungi grow through their hosts systemically? Fungal Ecol 13:53–59CrossRefGoogle Scholar
  59. Yang B, Ma H-Y, Wang X-M, Jia Y, Hu J, Li X, Dai C-C (2014a) Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Plant Physiol Biochem 82:172–182CrossRefGoogle Scholar
  60. Yang B, Wang X-M, Ma H-Y, Jia Y, Li X, Dai C-C (2014b) Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Plant Growth Regul 73:165–179. CrossRefGoogle Scholar
  61. Yu Q, Rengel Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Ann Bot 83:175–182CrossRefGoogle Scholar
  62. Yuan J, Zhou J-Y, Li X, Dai C-C (2016) The primary mechanism of endophytic fungus Gilmaniella sp. AL12 promotion of plant growth and sesquiterpenoid accumulation in Atractylodes lancea Plant Cell, Tissue and Organ Culture (PCTOC) 125:571–584Google Scholar
  63. Zabalgogeazcoa I (2008) Fungal endophytes and their interaction with plant pathogens: a review (2008) 6:9.
  64. Zavala-Gonzalez EA, Escudero N, Lopez-Moya F, Aranda-Martinez A, Exposito A, Ricaño-Rodríguez J, Naranjo-Ortiz MA, Ramírez-Lepe M, Lopez-Llorca LV (2015) Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. Ann Appl Biol 166:472–483CrossRefGoogle Scholar
  65. Zhou W, Starr JL, Krumm JL, Sword GA (2016) The fungal endophyte Chaetomium globosum negatively affects both above- and belowground herbivores in cotton. FEMS Microbiol Ecol 92.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Environment and Sustainable Development in AgriculturalChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations