Advertisement

Plant and Soil

, Volume 437, Issue 1–2, pp 375–395 | Cite as

Growth and metal accumulation of young forest trees and understorey plants on contaminated topsoil: influence of subsoil and time

  • Madeleine S. Günthardt-GoergEmail author
  • Pierre Vollenweider
  • Sandra Hermle
  • Rainer Schulin
Regular Article
  • 165 Downloads

Abstract

Aims

The study investigated the growth and metal accumulation over time of young forest vegetation growing on metal-contaminated topsoil above either acidic or calcareous subsoil.

Methods

A 4-year model ecosystem experiment was performed under quasi-natural conditions. The heavy metal (HM) contaminated topsoil contained around 3000 mg/kg Zn, 600 Cu, 100 Pb, 9 Cd.

Results

Total biomass was 25.7% lower on the acidic than on the calcareous subsoil. The HM topsoil did not affect total understorey and Salix biomass, but decreased the growth of Populus, Betula and on the acidic subsoil also that of Picea. Leaf Cd and Zn concentrations were around 6 and 1000 mg/kg, respectively, in Populus and Salix on the HM topsoil, and 0.6 and 200 mg/kg in Picea and understorey. Leaf and wood HM concentrations, were lower in Populus and Salix on the calcareous than on the acidic subsoil. Temporal trends differed among the investigated metals. The HM-induced relative increases in leaf and wood metal concentrations were lower by at least an order of magnitude than in the respective soluble topsoil metal concentrations. Over the four years, Zn was increasingly accumulated in older twigs in Picea.

Conclusions

The selected native trees are suited for phytomanagement of HM-contaminated topsoils. Subsoil acidity is a relevant factor.

Keywords

Forest ecosystem restoration Soil contamination Heavy metal allocation Phytomanagement Subsoil acidity Biomass production 

Notes

Acknowledgements

The authors thank Peter Bleuler, Michael Lautenschläger and Ueli Bühlmann fort their help in carrying out the experiment and Daniel Pezzotta and his team of the WSL central lab for the elemental analyses.

References

  1. Alloway BJ (2013) Sources of heavy metals and metalloids in soils. Environm Pollut book series 22:11–50Google Scholar
  2. André O, Vollenweider P, Günthardt-Goerg MS (2006) Foliage response to heavy metal contamination in sycamore maple (Acer pseudoplatanus L.). Forest Snow and Landscape Research 80:275–288Google Scholar
  3. Antweiler RC, Taylor HE (2008) Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets: I. Summary statistics. Environ Sci Technol 42:3732–3738CrossRefGoogle Scholar
  4. Baum S, Bolte A, Weih M (2012) High value of short rotation coppice plantations for phytodiversity in rural landscapes. GCB Bioenergy 4:728–738CrossRefGoogle Scholar
  5. Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204CrossRefGoogle Scholar
  6. Boyter MJ, Brummer JE, Leininger WC (2009) Growth and metal accumulation of Geyer and mountain willow grown in topsoil versus amended mine tailings. Water Air Soil Pol 198:17–29CrossRefGoogle Scholar
  7. Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region southern Italy. Plant Soil 318:285–298CrossRefGoogle Scholar
  8. Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, Rinaudo C, Berta G, Biondi S, Lingua G (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environm Pollut 157:2108–2117CrossRefGoogle Scholar
  9. Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environm Pollut 155:254–261CrossRefGoogle Scholar
  10. Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J 2012:173829CrossRefGoogle Scholar
  11. Cosio C, Vollenweider P, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) I. Macrolocalization and phytotoxic effects of cadmium. Environ Exp Bot 58:64–74CrossRefGoogle Scholar
  12. Čudić V, Stojiljković D, Jovović A (2016) Phytoremediation potential of wild plants growing on soil contaminated with heavy metals. Arh Hig Rada Toksiko 67:229–239CrossRefGoogle Scholar
  13. Domínguez MT, Madejón P, Marañón T, Murillo JM (2010) Afforestation of a trace-element polluted area in SW Spain: woody plant performance and trace element accumulation. Eur J For Res 129:47–59CrossRefGoogle Scholar
  14. Durand TC, Baillif P, Albéric P, Carpin S, Label P, Hausman J-F, Morabito D (2011) Cadmium and zinc are differentially distributed in Populus tremula x P. alba exposed to metal excess. Plant Biosyst 145:397–405CrossRefGoogle Scholar
  15. Evangelou MWH, Conesa HM, Robinson BH, Schulin R (2012a) Biomass production on trace element-contaminated land: a review. Environ Eng Sci 29:823–839CrossRefGoogle Scholar
  16. Evangelou MWH, Deram A, Gogos A, Studer B, Schulin R (2012b) Assessment of suitability of tree species for the production of biomass on trace element contaminated soils. J Hazard Mater 209:233–239CrossRefGoogle Scholar
  17. Evangelou MWH, Robinson BH, Günthardt-Goerg MS, Schulin R (2013) Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Int J Phytoremediat 15:77–90CrossRefGoogle Scholar
  18. Evangelou MWH, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Gill R, Gill SS, Lanza GR, Newman L (eds) Ansari AA. Springer International Publishing, Phytoremediation, pp 115–132Google Scholar
  19. Fahr M, Laplaze L, Bendaou N, Hocher V, El Mzibri M, Bogusz D, Smouni A (2013) Effect of lead on root growth. Front Plant Sci 4:175CrossRefGoogle Scholar
  20. Fifi U, Winiarski T, Emmanuel E (2013) Assessing the mobility of lead, copper and cadmium in a calcareous soil of Port-Au-Prince, Haiti. Int J Env Res Pub He 10:5830–5843CrossRefGoogle Scholar
  21. Fink S (1999) Pathological and regenerative plant anatomy. Gebrüder Bornträger, Berlin, pp 511–512Google Scholar
  22. French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environm Pollut 14:387–395CrossRefGoogle Scholar
  23. Gandois L, Probst A (2012) Localisation and mobility of trace metal in silver fir needles. Chemosphere 87:204–210CrossRefGoogle Scholar
  24. Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediat 1-2:115–123CrossRefGoogle Scholar
  25. Grodzińska K, Szarek-Łukaszewska G (2009) Heavy metal vegetation in the Olkusz region (southern Poland) - preliminary studies. Polish Bot J 54:105–112Google Scholar
  26. Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environm Pollut 147:467–488CrossRefGoogle Scholar
  27. Hamilton JG, Farrell RE, Chen N, Feng RF, Reid J, Peak D (2016) Characterizing zinc speciation in soils from a smelter-affected boreal forest ecosystem. J Environ Qual 45:684–692CrossRefGoogle Scholar
  28. Hermle S, Vollenweider P, Günthardt-Goerg MS, McQuattie CJ, Matyssek R (2007) Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Physiol 27:1517–1531CrossRefGoogle Scholar
  29. Holeksa J, Blonska A, Kompala-Baba A, Wozniak G, Kurek Szarek-Łukaszewska G, Grodzińska K, Zywiec M (2015) The vegetation of the Olkusz ore-bearing region. In: Godzik B (ed) Natural and historical values of the Olkusz ore-bearing region. W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, pp 105–128Google Scholar
  30. Huang S, Tu J, Liu H, Hua M, Liao Q, Feng J, Weng Z, Huang G (2009) Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmos Environ 43:5781–5790CrossRefGoogle Scholar
  31. Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK (2009) The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environm Pollut 157:931–937CrossRefGoogle Scholar
  32. Kandziora-Ciupa M, Ciepa R, Nadgórska-Socha A, Barczyk G (2016) Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology 25:970–981CrossRefGoogle Scholar
  33. Kosiorek M, Modrzewska B, Wyskowski M (2016) Levels of selected trace elements in scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.) and Norway maple (Acer platanoides L.) in an urbanized environment. Environ Monit assess 188:898CrossRefGoogle Scholar
  34. Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285CrossRefGoogle Scholar
  35. de la Fuente C, Pardo T, Alburquerque JA, Martínez-Alcalà I, Bernal MP, Clemente R (2014) Assessment of native shrubs for stabilisation of a trace elements-polluted soil as the final phase of a restoration process. Agric Ecosyst Environ 196:103–111CrossRefGoogle Scholar
  36. Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R (2004) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environm Pollut 131:485–494CrossRefGoogle Scholar
  37. Luster J, Menon M, Hermle S, Schulin R, Günthardt-Goerg MS, Nowack B (2008) Initial changes in refilled lysimeters built with metal polluted topsoil and acidic or calcareous subsoils as indicated by changes in drainage water composition. Water Air Soil Pol 8:163–176CrossRefGoogle Scholar
  38. Luwe MWF (1995) Distribution of nutrients and phytotoxic metal ions in the soil and two forest floor plant species of a beech (Fagus sylvatica L.) stand. Plant Soil 168-169:195–202CrossRefGoogle Scholar
  39. Maňkovská B, Godzik B, Badea O, Shparyk Y, Moravčík P (2004) Chemical and morphological characteristics of key tree species of the Carpathian Mountains. Environm Pollut 130:41–54CrossRefGoogle Scholar
  40. Menon M, Hermle S, Abbaspour KC, Günthardt-Goerg MS, Oswald SE, Schulin R (2005) Water regime of metal-contaminated soil under juvenile forest vegetation. Plant Soil 271:227–241CrossRefGoogle Scholar
  41. Menon M, Hermle S, Günthardt-Goerg MS, Schulin R (2007) Effects of heavy metal soil pollution and acid rain on growth and water use efficiency of a young model forest ecosystem. Plant Soil 297:171–183CrossRefGoogle Scholar
  42. Mertens J, Vervaeke P, Meers E, Tack FMG (2006) Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ Sci Technol 40:1962–1968CrossRefGoogle Scholar
  43. Mertens J, Van Nevel L, De Schrijver A, Piesschaert F, Oosterbaan A, Tack FMG, Verheyen K (2007) Tree species effect on the redistribution of soil metals. Environm Pollut 149:173–181CrossRefGoogle Scholar
  44. Migeon A, Richaud P, Guinet F, Chalot M, Blaudez D (2009) Metal accumulation by woody species on contaminated sites in the north of France. Water Air Soil Pol 204:89–101CrossRefGoogle Scholar
  45. Misra V, Tiwari A, Shukla B, Seth CS (2009) Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environ Monit Assess 155:467–475CrossRefGoogle Scholar
  46. Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strażyńska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34:1410–1418CrossRefGoogle Scholar
  47. Mleczek M, Kozlowska M, Kaczmarek Z, Chadzinikolau T, Golinski P (2012) Influence of ca/mg ratio on phytoextraction properties of Salix viminalis I. The effectiveness of Cd, Cu, Pb and Zn bioaccumulation and plant growth. Int J Phytoremediat 14:75–88Google Scholar
  48. Mleczek M, Rutkowski P, Kaniuczak J, Szostek M, Budka A, Magdziak Z, Budzyńska S, Kuczyńska-Kippen M, Niedzielski P (2018) The significance of selected tree species age in their efficiency in elements phytoextraction from waste mixture. Int J Env Sci Techn.  https://doi.org/10.1007/s13762-018-1996-0
  49. Mudrák O, Doležal J, Frouz J (2016) Initial species composition predicts the progress in the spontaneous succession on post-mining sites. Ecol Eng 95:665–670CrossRefGoogle Scholar
  50. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216Google Scholar
  51. Nowack B, Rais D, Frey B, Menon M, Schulin R, Günthardt-Goerg MS, Luster J (2006) Influence of metal contamination on soil parameters in a lysimeter experiment designed to evaluate phytostabilization by afforestation. Forest, Snow and Landscape Research 80:201–211Google Scholar
  52. Nowack B, Schulin R, Luster J (2010) Metal fractionation in a contaminated soil after reforestation: Temporal changes versus spatial variability. Environm Pollut 158:3272–3278Google Scholar
  53. Padmavathiamma PK, Li LY (2009) Phytoremediation of metal-contaminated soil in temperate and humid regions of British Columbia, Canada. Int J Phytoremediat 11:575–590CrossRefGoogle Scholar
  54. Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:158764CrossRefGoogle Scholar
  55. Pesonen J, Kuokkanen T, Rautio P, Lassi U (2017) Bioavailability of nutrients and harmful elements in ash fertilizers: effect of granulation. Biomass Bioenergy 100:92–97CrossRefGoogle Scholar
  56. Richardson JB, Donaldson EC, Kaste JM, Friedland AJ (2015) Forest floor lead, copper and zink concentrations across the northeastern unites states: synthesizing spatial and temporal responses. Sci Total Environ 505:851–859CrossRefGoogle Scholar
  57. Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. Forest Snow and Landscape Research 80:221–234Google Scholar
  58. Robinson BH, Bañuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266CrossRefGoogle Scholar
  59. Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustoš P, Zupan M, Wenzel WW (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environm Pollut 148:107–114CrossRefGoogle Scholar
  60. Van Slycken S, Witters N, Meiresonne L, Meers E, Ruttens A, Van Peteghem P, Weyens N, Tack FMG, Vangronsveld J (2013) Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Int J Phytoremediat 15:677–689CrossRefGoogle Scholar
  61. VBBo (2016) Verordnung über Belastungen des Bodens, Beschluss 1 Juli 1998 des Schweizer Bundesrates, Stand 1. Januar 2016Google Scholar
  62. Vodyanitskii YN (2016) Standards for the contents of heavy metals in soils of some states. Ann Agrar Sci 14:257–263CrossRefGoogle Scholar
  63. Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) part II microlocalization and cellular effects of cadmium. Environ Exp Bot 58:25–40CrossRefGoogle Scholar
  64. Vollenweider P, Menard T, Günthardt-Goerg MS (2011) Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level. Environm Pollut 159:324–336CrossRefGoogle Scholar
  65. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464CrossRefGoogle Scholar
  66. Zakrezewska M, Klimek B (2018) Trace element concentrations in tree and lichen collected along a metal pollution gradient near Olusz (southern Poland). Bull Environ Contam Toxicol 100:245–249CrossRefGoogle Scholar
  67. Zhao LYL, Schulin R, Weng LP, Nowack B (2007) Coupled mobilization of dissolved organic matter and metals (cu and Zn) in soil columns. Geochim Cosmochim Ac 71:3407–3418CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
  2. 2.Swiss Federal Office of Energy (SFOE) BFEBernSwitzerland
  3. 3.Institute of Terrestrial Ecosystems (ITES)ETH ZürichCH-8092 ZürichSwitzerland

Personalised recommendations