Advertisement

Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients

  • Trung Hieu MaiEmail author
  • Andrea Schnepf
  • Harry Vereecken
  • Jan Vanderborght
Regular Article
  • 170 Downloads

Abstract

Background and aims

Although modelling of water and nutrient uptake by root systems has advanced considerably in recent years, steep local gradients of nutrient concentration near the root-soil interface in the rhizosphere are still a central challenge for accurate simulation of water and nutrient uptake at the root system scale. Conventionally, mesh refinement is used to resolve these gradients. However, it results in excessive computational costs. The object of the study is to present a multiscale approach which resolves the steep gradient of nutrient concentrations at rhizosphere scale and simulates nutrient and water fluxes within the entire root zone at macroscale scale in a computationally efficient way.

Methods

We developed a 3D water and nutrient transport model of the root-soil system with explicit consideration of the 3D root architecture. To capture the nutrient gradients at root surfaces, 1D axisymmetric soil models at rhizosphere scale were constructed and coupled to the coarse 3D root-system-scale simulations using a mass conservative approach. The multiscale model was investigated under different scenarios for water and potassium (K+) uptake of a single root, multiple roots, and whole 3D architecture of a Zea mays L. root system in conditions of dynamic soil water and different soil buffer capacity of K+.

Results

The steep gradients of K+ concentrations were efficiently resolved in the multiscale simulations thanks to the 1D model at the rhizosphere scale. In comparison with the refinement method, the multiscale model achieved a significant accuracy of K+ uptake prediction with a relative error below 5%. Meanwhile, the simulation at macroscale with coarse mesh could overestimate the K+ uptake in one order of magnitude. Moreover, the computational cost of multiscale simulations was decreased considerably by using coarse soil mesh.

Conclusions

The newly developed model can describe the effect of the drying and nutrient transport in the root zone on nutrient uptake. It also allows to simulate processes in larger and complex root systems because of the considerable reduction in computational cost.

Keywords

Water uptake Nutrient uptake Root system architecture Root soil modelling Multiscale Root system scale Single root scale Rhizosphere 

Notes

Acknowledgements

This work was funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the funding initiative “Soil as a Sustainable Resource for the Bioeconomy BonaRes”, the project “BonaRes (Module A): Sustainable Subsoil Management-Soil3; subproject 3” (grant 031B0026C). The authors would like to thank Timo Koch, Katharina Heck, Bernd Flemisch and Rainer Helmig from the Department of Hydromechanics and Modelling of Hydrosystem at University of Stuttgart, Germany, for their helpful advice on technical implementation in DuMux framework and three anonymous reviewers for their valuable comments and suggestions for improving this manuscript.

References

  1. Aravena JE, Berli M, Ghezzehei TA, Tyler SW (2011) Effects of root-induced compaction on rhizosphere hydraulic properties-x-ray microtomography imaging and numerical simulations. Environ Sci Technol 45(2):425–431PubMedCrossRefGoogle Scholar
  2. Baldwin J, Nye P, Tinker P (1973) Uptake of solutes by multiple root systems from soil. Plant Soil 38(3):621–635CrossRefGoogle Scholar
  3. Barber SA (1962) A diffusion and mass-flow concept of soil nutrient availability. Soil Sci 93(1):39–49.  https://doi.org/10.1097/00010694-196201000-00007 CrossRefGoogle Scholar
  4. Barber S (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New YorkGoogle Scholar
  5. Barber S, Cushman J (1981) Nitrogen uptake model for agronomic crops. Modeling wastewater renovation: Land treatment Wiley Interscience, New York, pp 382–489Google Scholar
  6. Bastian P, Blatt M, Engwer C, Dedner A, Klöfkorn R, Kuttanikkad S, Ohlberger M, Sander O (2006) The distributed and unified numerics environment (DUNE). In: Proceedings of the 19th symposium on simulation technique in Hannover, vol 123Google Scholar
  7. Bear J, Cheng AHD (2010) Modeling groundwater flow and contaminant transport, Springer Science & Business Media, BerlinGoogle Scholar
  8. Beudez N, Doussan C, Lefeuve-Mesgouez G, Mesgouez A (2013) Influence of three root spatial arrangement on soil water flow and uptake. Results from an explicit and an equivalent upscaled model. Procedia Environ Sci 19:37–46.  https://doi.org/10.1016/j.proenv.2013.06.005 CrossRefGoogle Scholar
  9. Bhattacharyya P, Datta S (2005) Modification of phosphate uptake model considering changing buffering capacity of soil and release threshold limit of phosphorus in soil due to rhizosphere effect. Commun Soil Sci Plant Anal 35(13–14):1773–1792CrossRefGoogle Scholar
  10. Carminati A, Vetterlein D, Koebernick N, Blaser S, Weller U, Vogel HJ (2013) Do roots mind the gap? Plant Soil 367(1–2):651–661CrossRefGoogle Scholar
  11. Carminati A, Zarebanadkouki M, Kroener E, Ahmed M, Holz M (2016) Biophysical rhizosphere processes affecting root water uptake. Ann Bot 118(4):561–571PubMedCentralCrossRefGoogle Scholar
  12. Clausnitzer V, Hopmans J (1994) Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164(2):299–314CrossRefGoogle Scholar
  13. Couvreur V, Vanderborght J, Draye X, Javaux M (2014) Dynamic aspects of soil water availability for isohydric plants: focus on root hydraulic resistances. Water Resour Res 50(11):8891–8906CrossRefGoogle Scholar
  14. Darrah PR, Jones DL, Kirk GJD, Roose T (2006) Modelling the rhizosphere: a review of methods for upscaling to the whole-plant scale. Eur J Soil Sci 57(1):13–25.  https://doi.org/10.1111/j.1365-2389.2006.00786.x CrossRefGoogle Scholar
  15. de Willigen P, Heinen M, van Noordwijk M (2018) Roots partially in contact with soil: analytical solutions and approximation in models of nutrient and water uptake. Vadose Zone J 17(1):0.  https://doi.org/10.2136/vzj2017.03.0060 CrossRefGoogle Scholar
  16. Diggle AJ (1988) ROOTMAP - a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil 105(2):169–178.  https://doi.org/10.1007/bf02376780 CrossRefGoogle Scholar
  17. Doussan C, Pierret A, Garrigues E, Pagés L (2006) Water uptake by plant roots: II – modelling of water transfer in the soil root-system with explicit account of flow within the root system – comparison with experiments. Plant Soil 283(1–2):99–117.  https://doi.org/10.1007/s11104-004-7904-z CrossRefGoogle Scholar
  18. Dunbabin VM, Diggle AJ, Rengel Z, van Hugten R (2002) Modelling the interactions between water and nutrient uptake and root growth. Plant Soil 239(1):19–38.  https://doi.org/10.1023/a:1014939512104 CrossRefGoogle Scholar
  19. Dunbabin VM, McDermott S, Bengough AG (2006) Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake. Plant Soil 283 (1–2):57–72.  https://doi.org/10.1007/s11104-005-0866-y CrossRefGoogle Scholar
  20. Dunbabin VM, Postma JA, Schnepf A, Pagés L, Javaux M, Wu L, Leitner D, Chen YL, Rengel Z, Diggle AJ (2013) Modelling root–soil interactions using three–dimensional models of root growth architecture and function. Plant Soil 372(1–2):93–124.  https://doi.org/10.1007/s11104-013-1769-y CrossRefGoogle Scholar
  21. FAO (2016) The state of food and agriculture. Climate change, agriculture and food securityGoogle Scholar
  22. Feddes RA, Kowalik P, Kolinska-Malinka K, Zaradny H (1976) Simulation of field water uptake by plants using a soil water dependent root extraction function. J Hydrol 31(1–2):13–26CrossRefGoogle Scholar
  23. Flemisch B, Darcis M, Erbertseder K, Faigle B, Lauser A, Mosthaf K, Müthing S, Nuske P, Tatomir A, Wolff M, Helmig R (2011) DuMux: DUNE for multi-{phase, component, scale, physics,} flow and transport in porous media. Adv Water Resour 34(9):1102–1112.  https://doi.org/10.1016/j.advwatres.2011.03.007 CrossRefGoogle Scholar
  24. French J, Steudle E (1989) Axial and radial hydraulic resistance to roots of maize (Zea mays L.). Plant Physiol 91(2):719–726.  https://doi.org/10.1104/pp.91.2.719 CrossRefGoogle Scholar
  25. Gardner WR (1960) Dynamic aspects of water availability to plants. Soil Sci 89(2):63–73CrossRefGoogle Scholar
  26. Gérard F, Blitz-Frayret C, Hinsinger P, Pagés L (2017) Modelling the interactions between root system architecture root functions and reactive transport processes in soil. Plant Soil 413(1–2):161–180.  https://doi.org/10.1007/s11104-016-3092-x CrossRefGoogle Scholar
  27. Helliwell J, Miller A, Whalley W, Mooney S, Sturrock C (2014) Quantifying the impact of microbes on soil structural development and behaviour in wet soils. Soil Biol Biochem 74:138–147CrossRefGoogle Scholar
  28. Hiltner Lt (1904) U neuere erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundungung und brache. Arb Dtsch Landwirt Ges 98:59–78Google Scholar
  29. Hinsinger P, Brauman A, Devau N, Gérard F, Jourdan C, Laclau JP, Le Cadre E, Jaillard B, Plassard C (2011) Acquisition of phosphorus and other poorly mobile nutrients by roots. where do plant nutrition models fail? Plant Soil 348(1–2):29CrossRefGoogle Scholar
  30. Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7(3):1079– 1088CrossRefGoogle Scholar
  31. Javaux M, Couvreur V, Vanderborght J, Vereecken H (2013) Root water uptake: from three-dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone J 12(4)Google Scholar
  32. Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R, Javaux M, Kemna A, Kuzyakov Y, Munch J et al (2013) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003– 1022CrossRefGoogle Scholar
  33. Koch T, Heck K, Schröder N, Class H, Helmig R (2018) A new simulation framework for Soil–Root interaction, evaporation, root growth, and solute transport. Vadose Zone J 17(1)Google Scholar
  34. Landl M, Huber K, Schnepf A, Vanderborght J, Javaux M, Bengough AG, Vereecken H (2017) A new model for root growth in soil with macropores. Plant Soil 415(1–2):99–116CrossRefGoogle Scholar
  35. Leitner D, Klepsch S, Bodner G, Schnepf A (2010a) A dynamic root system growth model based on L-Systems. Plant Soil 332(1–2):177–192.  https://doi.org/10.1007/s11104-010-0284-7 CrossRefGoogle Scholar
  36. Leitner D, Klepsch S, Ptashnyk M, Marchant A, Kirk G, Schnepf A, Roose T (2010b) A dynamic model of nutrient uptake by root hairs. Phytol 185(3):792–802CrossRefGoogle Scholar
  37. Leitner D, Meunier F, Bodner G, Javaux M, Schnepf A (2014) Impact of contrasted maize root traits at flowering on water stress tolerance – a simulation study. Field Crop Res 165:125–137.  https://doi.org/10.1016/j.fcr.2014.05.009 CrossRefGoogle Scholar
  38. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55(5):493–512CrossRefGoogle Scholar
  39. Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200.  https://doi.org/10.1039/tf9615701200 CrossRefGoogle Scholar
  40. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522.  https://doi.org/10.1029/wr012i003p00513 CrossRefGoogle Scholar
  41. Nowack B, Mayer KU, Oswald SE, van Beinum W, Appelo CAJ, Jacques D, Seuntjens P, Gérard F, Jaillard B, Schnepf A, Roose T (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285(1–2):305–321.  https://doi.org/10.1007/s11104-006-9017-3 CrossRefGoogle Scholar
  42. Passioura J (1963) A mathematical model for the uptake of ions from the soil solution. Plant Soil 18(2):225–238CrossRefGoogle Scholar
  43. Passioura JB (2002) Soil conditions and plant growth. Plant Cell Environ 25(2):311–318.  https://doi.org/10.1046/j.0016-8025.2001.00802.x PubMedCrossRefGoogle Scholar
  44. Passioura J, Frere M (1967) Numerical analysis of the convection and diffusion of solutes to roots. Aust J Soil Res 5(2):149.  https://doi.org/10.1071/sr9670149 CrossRefGoogle Scholar
  45. Postma JA, Kuppe C, Owen MR, Mellor N, Griffiths M, Bennett MJ, Lynch JP, Watt M (2017) OpenSimRoot: widening the scope and application of root architectural models. New Phytologist 215(3):1274–1286.  https://doi.org/10.1111/nph.14641 PubMedCrossRefGoogle Scholar
  46. Roose T, Fowler A (2004) A mathematical model for water and nutrient uptake by plant root systems. J Theor Biol 228(2):173–184PubMedCrossRefGoogle Scholar
  47. Roose T, Kirk G (2009) The solution of convection–diffusion equations for solute transport to plant roots. Plant Soil 316(1–2):257–264CrossRefGoogle Scholar
  48. Roose T, Fowler A, Darrah P (2001) A mathematical model of plant nutrient uptake. J Math Biol 42(4):347–360.  https://doi.org/10.1007/s002850000075 PubMedCrossRefGoogle Scholar
  49. Roose T, Keyes S, Daly K, Carminati A, Otten W, Vetterlein D, Peth S (2016) Challenges in imaging and predictive modeling of rhizosphere processes. Plant Soil 407(1–2):9–38CrossRefGoogle Scholar
  50. Schnepf A, Leitner D, Klepsch S (2012) Modeling phosphorus uptake by a growing and exuding root system. Vadose Zone J 11(3)Google Scholar
  51. Schnepf A, Leitner D, Landl M, Lobet G, Mai TH, Morandage S, Sheng C, Zörner M, Vanderborght J, Vereecken H (2018) CRootBox: a structural–functional modelling framework for root systems. Annals of Botany.  https://doi.org/10.1093/aob/mcx221
  52. Schröder T, Tang L, Javaux M, Vanderborght J, Körfgen B, Vereecken H (2009) A grid refinement approach for a three-dimensional soil-root water transfer model. Water Resour Res 45(10).  https://doi.org/10.1029/2009wr007873
  53. Schröder N, Javaux M, JVanderborght Steffen B, Vereecken H (2012) Effect of root water and solute uptake on apparent soil dispersivity: a simulation study. Vadose Zone J 11(3):0.  https://doi.org/10.2136/vzj2012.0009 CrossRefGoogle Scholar
  54. Szegedi K (2009) Multi-component reactive transport modelling in the rhizosphere: the special case of arsenate. PhD thesis, Zugl.: Halle (Saale), martin-luther-universität Halle-Wittenberg, Diss., 2009Google Scholar
  55. Tinker PB, Nye P (2000) Solute movement in the rhizosphere. Oxford University Press, LondonGoogle Scholar
  56. Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci Formerly Pestic Sci 56(9):767– 778CrossRefGoogle Scholar
  57. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892.  https://doi.org/10.2136/sssaj1980.03615995004400050002x CrossRefGoogle Scholar
  58. Vanderborght J, Kasteel R, Herbst M, Javaux M, Thiéry D, Vanclooster M, Mouvet C, Vereecken H (2005) A set of analytical benchmarks to test numerical models of flow and transport in soils. Vadose Zone J 4(1):206.  https://doi.org/10.2136/vzj2005.0206 CrossRefGoogle Scholar
  59. Vereecken H, Schnepf A, Hopmans J, Javaux M, Or D, Roose T, Vanderborght J, Young M, Amelung W, Aitkenhead M, Allison S, Assouline S, Baveye P, Berli M, Brüggemann N, Finke P, Flury M, Gaiser T, Govers G, Ghezzehei T, Hallett P, Franssen HH, Heppell J, Horn R, Huisman J, Jacques D, Jonard F, Kollet S, Lafolie F, Lamorski K, Leitner D, McBratney A, Minasny B, Montzka C, Nowak W, Pachepsky Y, Padarian J, Romano N, Roth K, Rothfuss Y, Rowe E, Schwen A, Šimu̇nek J, Tiktak A, Dam JV, van der Zee S, Vogel H, Vrugt J, Wöhling T, Young I (2016) Modeling soil processes: review key challenges, and new perspectives. Vadose Zone J 15(5):0.  https://doi.org/10.2136/vzj2015.09.0131 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Forschungszentrum Juelich GmbH, Agrosphere (IBG-3)JuelichGermany

Personalised recommendations