Advertisement

Linkages between aboveground and belowground community compositions in grasslands along a historical land-use intensity gradient

  • Safaa Wasof
  • An De Schrijver
  • Stephanie Schelfhout
  • Michael P. Perring
  • Elyn Remy
  • Jan Mertens
  • Eduardo de la Peña
  • Nancy De Sutter
  • Nicole Viaene
  • Kris Verheyen
Regular Article

Abstract

Background and aims

Improving our understanding of ecosystem responses to land-use intensification requires explicit consideration of linkages between aboveground and belowground communities. Here, we explore linkages between plant, soil microbial and nematode community compositions along a historical land-use intensity (hLUI) gradient.

Methods

We used co-inertia analysis to investigate linkages between each paired community composition in 33 grasslands with similar hydrology and soil texture but contrasting hLUI and associated soil chemical properties (e.g. pH, phosphorus). We estimated the percentage cover of plant species, identified nematodes to genus level, and analysed the microbial community using phospholipid fatty acid (PLFA) profiling.

Results

Plant and nematode communities were more strongly linked as compared to either community’s links with microbes, although all pairwise comparisons were significant. Linkage strength did not depend on the degree of hLUI. We found significant variations in plant and nematode, but not in microbial, community compositions along the hLUI gradient.

Conclusions

Large changes in soil fertility associated with hLUI have led to shifts in vegetation community composition matched by changes in the composition of different soil communities, or vice versa. The nematode community seems to be more responsive to vegetation composition than other trophic groups. Additional research in an experimental setting will elucidate the mechanisms underpinning the observed relationships.

Keywords

Co-inertia Microbes Nematodes pH Phosphorus Species-rich grasslands 

Abbreviations

COIA

Co-inertia analysis

hLUI

Historical land-use intensity

PLFA

Phospholipid fatty acid

AMF

Arbuscular mycorrhizal fungi

HCPC

Hierarchical clustering on principal components

PCA

Principal component analysis

Notes

Acknowledgements

SW works as postdoctoral researcher on a project funded by the Flemish Fund for Scientific Research (FWO, n° G050215 N). The authors thank the three anonymous reviewers for their constructive comments. We would like to thank Stéphane Dray, Noriko A. Cassman and Cajo Ter Braak for their adviceconcerning the use of the co-inertia analysis. We furthermore thank nature conservators Kris Van der Steen, Marc Smets, Christine Verscheure and Eckhart Kuijken for the permission to do research in their nature reserves, their help in selecting the study parcels and providing all necessary information on the history and management of the plots. We furthermore thank Lander Baeten for his comments on the first version of the study, Annelies Haegeman for her assistance in interpreting PLFA analyses and Luc Willems and Greet De bruyn for the chemical analyses of the soil samples.

Supplementary material

11104_2018_3855_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1896 kb)
11104_2018_3855_MOESM2_ESM.docx (23 kb)
ESM 2 (DOCX 23 kb)
11104_2018_3855_MOESM3_ESM.docx (14 kb)
ESM 3 (DOCX 14 kb)
11104_2018_3855_MOESM4_ESM.docx (232 kb)
ESM 4 (DOCX 231 kb)

References

  1. Allan E, Bossdorf O, Dormann CF, Prati D, Gossner MM, Tscharntke T, Bluthgen N, Bellach M, Birkhofer K, Boch S, Bohm S, Borschig C, Chatzinotas A, Christ S, Daniel R, Diekotter T, Fischer C, Friedl T, Glaser K, Hallmann C, Hodac L, Holzel N, Jung K, Klein AM, Klaus VH, Kleinebecker T, Krauss J, Lange M, Morris EK, Muller J, Nacke H, Pa ali E, Rillig MC, Rothenwohrer C, Schall P, Scherber C, Schulze W, Socher SA, Steckel J, Steffan-Dewenter I, Turke M, Weiner CN, Werner M, Westphal C, Wolters V, Wubet T, Gockel S, Gorke M, Hemp A, Renner SC, Schoning I, Pfeiffer S, Konig-Ries B, Buscot F, Linsenmair KE, Schulze ED, Weisser WW, Fischer M (2014) Interannual variation in land-use intensity enhances grassland multidiversity. PNAS 111:308–313.  https://doi.org/10.1073/pnas.1312213111 CrossRefPubMedGoogle Scholar
  2. Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843.  https://doi.org/10.1111/ele.12469 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Argüelles M, Benavides C, Fernández I (2014) A new approach to the identification of regional clusters: hierarchical clustering on principal components. Appl Econ 46:2511–2519.  https://doi.org/10.1080/00036846.2014.904491 CrossRefGoogle Scholar
  4. Baptist F, Tcherkez G, Aubert S, Pontailler JY, Choler P, Nogués S (2009) 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. J Exp Bot 60:2725–2735.  https://doi.org/10.1093/jxb/erp128 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bardgett RD, McAlister E (1999) The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29:282–290.  https://doi.org/10.1007/s003740050554 CrossRefGoogle Scholar
  6. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages : biotic interactions, ecosystem processes, and global change. Oxford University Press, OxfordGoogle Scholar
  7. Bardgett RD, Hobbs PJ, Frostegård Å (1996) Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264.  https://doi.org/10.1007/BF00382522 CrossRefGoogle Scholar
  8. Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660.  https://doi.org/10.1046/j.1365-2435.1999.00362.x CrossRefGoogle Scholar
  9. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  10. Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251.  https://doi.org/10.1016/S0929-1393(98)00123-1 CrossRefGoogle Scholar
  11. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228.  https://doi.org/10.1016/S0169-5347(98)01583-3 CrossRefPubMedGoogle Scholar
  12. Broughton LC, Gross KL (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125:420–427.  https://doi.org/10.1007/s004420000456 CrossRefPubMedGoogle Scholar
  13. Cassman NA, Leite MFA, Pan Y, de Hollander M, van Veen JA, Kuramae EE (2016) Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci Rep 6:23680.  https://doi.org/10.1038/srep23680 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cools N, Wils C, Hens M, et al (2015) Atmosferische stikstofdepositie en Natura 2000 instandhoudingsdoelstellingen in Vlaanderen . Verkennende gewestelijke ruimtelijke analyse van de ecologische impact , van sectorbijdragen en van de bijdrageGoogle Scholar
  15. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47.  https://doi.org/10.1023/A:1020809400075 CrossRefGoogle Scholar
  16. De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633.  https://doi.org/10.1016/j.tree.2005.08.009 CrossRefPubMedGoogle Scholar
  17. De Deyn GB, Raaijmakers CE, van Ruijven J et al (2004) Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106:576–586.  https://doi.org/10.1111/j.0030-1299.2004.13265.x CrossRefGoogle Scholar
  18. De Deyn GB, Quirk H, Oakley S et al (2011) Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8:1131–1139.  https://doi.org/10.5194/bg-8-1131-2011 CrossRefGoogle Scholar
  19. De Graaf MCC, Bobbink R, Smits NC et al (2009) Biodiversity, vegetation gradients and key biogeochemical processes in the heathland landscape. Biol Conserv 142:2191–2201.  https://doi.org/10.1016/j.biocon.2009.04.020 CrossRefGoogle Scholar
  20. de Neergaard A, Hauggaard-Nielsen H, Stoumann Jensen L, Magid J (2002) Decomposition of white clover (Trifolium repens) and ryegrass (Lolium perenne) components: C and N dynamics simulated with the DAISY soil organic matter submodel. Eur J Agron 16:43–55.  https://doi.org/10.1016/S1161-0301(01)00118-6 CrossRefGoogle Scholar
  21. de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38:2092–2103.  https://doi.org/10.1016/j.soilbio.2006.01.008 CrossRefGoogle Scholar
  22. de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang 2:276–280.  https://doi.org/10.1038/nclimate1368 CrossRefGoogle Scholar
  23. De Vries FT, Bracht Jørgensen H, Hedlund K, Bardgett RD (2015) Disentangling plant and soil microbial controls on carbon and nitrogen loss in grassland mesocosms. J Ecol 103:629–640.  https://doi.org/10.1111/1365-2745.12383 CrossRefGoogle Scholar
  24. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31:277–294.  https://doi.org/10.1111/j.1365-2427.1994.tb01741.x CrossRefGoogle Scholar
  25. Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. JSS J Stat Softw 22Google Scholar
  26. Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089.  https://doi.org/10.1890/03-0178 CrossRefGoogle Scholar
  27. Escoufier Y (1973) Le Traitement des Variables Vectorielles. Biometrics 29:751–760.  https://doi.org/10.2307/2529140 CrossRefGoogle Scholar
  28. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590.  https://doi.org/10.1038/nrmicro.2017.87 CrossRefPubMedGoogle Scholar
  29. Frostegård Å, Bååth E, Tunlio A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730.  https://doi.org/10.1016/0038-0717(93)90113-P CrossRefGoogle Scholar
  30. Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625.  https://doi.org/10.1016/j.soilbio.2010.11.021 CrossRefGoogle Scholar
  31. Göransson P, Olsson PA, Postma J, Falkengren-Grerup U (2008) Colonisation by arbuscular mycorrhizal and fine endophytic fungi in four woodland grasses – variation in relation to pH and aluminium. Soil Biol Biochem 40:2260–2265.  https://doi.org/10.1016/J.SOILBIO.2008.05.002 CrossRefGoogle Scholar
  32. Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, Buscot F, Diekötter T, Jorge LR, Jung K, Keyel AC, Klein AM, Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C, Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M, Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S, Westphal C, Fischer M, Weisser WW, Allan E (2016) Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540:266–269.  https://doi.org/10.1038/nature20575 CrossRefPubMedGoogle Scholar
  33. Grayston S, Campbell C, Bardgett R et al (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84.  https://doi.org/10.1016/S0929-1393(03)00098-2 CrossRefGoogle Scholar
  34. Hendrickx G (1995) An automatic apparatus for extracting free-living nematode stages from soil. Nematologica 41:308Google Scholar
  35. Holtkamp R, Kardol P, van der Wal A, Dekker SC, van der Putten WH, de Ruiter PC (2008) Soil food web structure during ecosystem development after land abandonment. Appl Soil Ecol 39:23–34.  https://doi.org/10.1016/j.apsoil.2007.11.002 CrossRefGoogle Scholar
  36. Hooftman DAP, Bullock JM (2012) Mapping to inform conservation: a case study of changes in semi-natural habitats and their connectivity over 70years. Biol Conserv 145:30–38.  https://doi.org/10.1016/j.biocon.2011.09.015 CrossRefGoogle Scholar
  37. Hooper DU, Bignell DE, Brown VK et al (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50:1049–1061. https://doi.org/10.1641/0006-3568(2000)050[1049:ibaabb]2.0.co;2CrossRefGoogle Scholar
  38. Husson F, Julie J, Pages J (2010) Principal component methods-hierarchical clustering-partitional clustering: why would we need to choose for visualizing data? Tech RepGoogle Scholar
  39. Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB (2011) Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem 43:2184–2193.  https://doi.org/10.1016/J.SOILBIO.2011.06.022 CrossRefGoogle Scholar
  40. Kardol P, De Long JR (2018) How anthropogenic shifts in plant community composition alter soil food webs. F1000Research 7:4.  https://doi.org/10.12688/f1000research.13008.1 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kardol P, Bezemer TM, van der Wal A, van der Putten WH (2005) Successional trajectories of soil nematode and plant communities in a chronosequence of ex-arable lands. Biol Conserv 126:317–327.  https://doi.org/10.1016/J.BIOCON.2005.06.005 CrossRefGoogle Scholar
  42. Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9:1080–1088.  https://doi.org/10.1111/j.1461-0248.2006.00953.x CrossRefPubMedGoogle Scholar
  43. Kardol P, Bezemer TM, Van Der Putten WH (2009) Soil organism and plant introductions in restoration of species-rich grassland communities. Restor Ecol 17:258–269.  https://doi.org/10.1111/j.1526-100X.2007.00351.x CrossRefGoogle Scholar
  44. Kardol P, Wardle DA, Bardgett RD et al (2010) How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol Evol 25:670–679.  https://doi.org/10.1016/j.tree.2010.09.001 CrossRefPubMedGoogle Scholar
  45. Korthals GW, Smilauer P, Van Dijk C, Van Der Putten WH (2001) Linking above- and below-ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land. Funct Ecol 15:506–514.  https://doi.org/10.1046/j.0269-8463.2001.00551.x CrossRefGoogle Scholar
  46. Kušlienė G, Rasmussen J, Kuzyakov Y, Eriksen J (2014) Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates. Soil Biol Biochem 76:22–33.  https://doi.org/10.1016/J.SOILBIO.2014.05.003 CrossRefGoogle Scholar
  47. Lajtha K, Driscoll C, Jarrell W, Elliott E (1999) Soil phosphorus: characterization and total element analysis. In: Robertson G, Coleman D, Bledsoe C, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 115–142Google Scholar
  48. Lambers H, Shane MW, Cramer MD et al (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713.  https://doi.org/10.1093/aob/mcl114 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415.  https://doi.org/10.1016/j.soilbio.2008.05.021 CrossRefGoogle Scholar
  50. Li A-R, Guan K-Y, Stonor R, Smith SE, Smith FA (2013) Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Ann Bot 112:1089–1098.  https://doi.org/10.1093/aob/mct177 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Marrs RH (2016) Ecological restoration: soil microbes call the shots. Nat Plants 2:16117.  https://doi.org/10.1038/nplants.2016.117 CrossRefPubMedGoogle Scholar
  52. Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061.  https://doi.org/10.5194/bg-8-2047-2011 CrossRefGoogle Scholar
  53. Middleton BA (2013) Rediscovering traditional vegetation management in preserves: trading experiences between cultures and continents. Biol Conserv 158:271–279.  https://doi.org/10.1016/j.biocon.2012.10.003 CrossRefGoogle Scholar
  54. Milcu A, Allan E, Roscher C, Jenkins T, Meyer ST, Flynn D, Bessler H, Buscot F, Engels C, Gubsch M, König S, Lipowsky A, Loranger J, Renker C, Scherber C, Schmid B, Thébault E, Wubet T, Weisser WW, Scheu S, Eisenhauer N (2013) Functionally and phylogenetically diverse plant communities key to soil biota. Ecology 94:1878–1885CrossRefGoogle Scholar
  55. Moora M, Davison J, Öpik M, Metsis M, Saks Ü, Jairus T, Vasar M, Zobel M (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621.  https://doi.org/10.1111/1574-6941.12420 CrossRefPubMedGoogle Scholar
  56. Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71:6784–6792.  https://doi.org/10.1128/AEM.71.11.6784-6792.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738.  https://doi.org/10.1016/J.SOILBIO.2010.01.006 CrossRefGoogle Scholar
  58. Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorialGoogle Scholar
  59. Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:288.  https://doi.org/10.2307/3544689 CrossRefGoogle Scholar
  60. Pywell RF, Bullock JM, Hopkins A, Walker KJ, Sparks TH, Burke MJW, Peel S (2002) Restoration of species-rich grassland on arable land: assessing the limiting processes using a multi-site experiment. J Appl Ecol 39:294–309.  https://doi.org/10.1046/j.1365-2664.2002.00718.x CrossRefGoogle Scholar
  61. Pywell RF, Bullock JM, Tallowin JB et al (2007) Enhancing diversity of species-poor grasslands: an experimental assessment of multiple constraints. J Appl Ecol 44:81–94CrossRefGoogle Scholar
  62. R Core Team (2017) R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  63. Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470.  https://doi.org/10.1890/10-0426.1 CrossRefPubMedGoogle Scholar
  64. Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291CrossRefGoogle Scholar
  65. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351.  https://doi.org/10.1038/ismej.2010.58 CrossRefPubMedGoogle Scholar
  66. Roy-Bolduc A, Laliberté E, Boudreau S, Hijri M (2016) Strong linkage between plant and soil fungal communities along a successional coastal dune system. FEMS Microbiol Ecol fiw 156.  https://doi.org/10.1093/femsec/fiw156 CrossRefGoogle Scholar
  67. Rumpel C, Crème A, Ngo P et al (2015) The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J Soil Sci Plant Nutr 15:0–0.  https://doi.org/10.4067/S0718-95162015005000034 CrossRefGoogle Scholar
  68. Schelfhout S, De Schrijver A, De Bolle S et al (2015) Phosphorus mining for ecological restoration on former agricultural land. Restor Ecol 23:842–851.  https://doi.org/10.1111/rec.12264 CrossRefGoogle Scholar
  69. Schelfhout S, Mertens J, Perring MP, Raman M, Baeten L, Demey A, Reubens B, Oosterlynck S, Gibson-Roy P, Verheyen K, de Schrijver A (2017) P-removal for restoration of Nardus grasslands on former agricultural land: cutting traditions. Restor Ecol 25:S178–S187.  https://doi.org/10.1111/rec.12531 CrossRefGoogle Scholar
  70. Scheurwater I, Cornelissen C, Dictus F, Welschen R, Lambers H (1998) Why do fast- and slow-growing grass species differ so little in their rate of root respiration, considering the large differences in rate of growth and ion uptake? Plant Cell Environ 21:995–1005.  https://doi.org/10.1046/j.1365-3040.1998.00341.x CrossRefGoogle Scholar
  71. Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus, EU tender ENV.B.1/ETU/2009/0025. Plant Res Int WageningenGoogle Scholar
  72. Seguel A, Cumming JR, Klugh-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167–183.  https://doi.org/10.1007/s00572-013-0479-x CrossRefPubMedGoogle Scholar
  73. Seinhorst JW (1966) Killing nematodes for taxonomic study with hot f.a. 4 : 1. Nematologica 12:178–178a.  https://doi.org/10.1163/187529266X00239 CrossRefGoogle Scholar
  74. Simons NK, Lewinsohn T, Blüthgen N, Buscot F, Boch S, Daniel R, Gossner MM, Jung K, Kaiser K, Müller J, Prati D, Renner SC, Socher SA, Sonnemann I, Weiner CN, Werner M, Wubet T, Wurst S, Weisser WW (2017) Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agric Ecosyst Environ 237:143–153.  https://doi.org/10.1016/J.AGEE.2016.12.022 CrossRefGoogle Scholar
  75. Socher SA, Prati D, Boch S, Müller J, Baumbach H, Gockel S, Hemp A, Schöning I, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW, Fischer M (2013) Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic Appl Ecol 14:126–136.  https://doi.org/10.1016/J.BAAE.2012.12.003 CrossRefGoogle Scholar
  76. T’Jollyn F, Bosch H, Demolder H, et al (2009) Ontwikkeling van criteria voor de beoordeling van de lokale staat van instandhouding van de Natura 2000 habitattypen, versie 2.0. Rapp van het Inst voor Natuur- en Bosonderzoek 2009.46:Google Scholar
  77. Tits M, Elsen A, Deckers S, Boon W (2016) Bodemvruchtbaarheid van de akkerbouw- en weilandpercelen in België en noordelijk Frankrijk (2012–2015). Bodemkundige DienstGoogle Scholar
  78. Tunlid A, White DC (1991) Biochemical analysis of biomass, community structure, nutritional status and metabolic activity of the microbial communities in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 7, pp 229–262Google Scholar
  79. Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310.  https://doi.org/10.1111/j.1461-0248.2007.01139.x CrossRefPubMedGoogle Scholar
  80. van der Wal A, Geerts RHEM, Korevaar H, Schouten AJ, op Akkerhuis GAJMJ, Rutgers M, Mulder C (2009) Dissimilar response of plant and soil biota communities to long-term nutrient addition in grasslands. Biol Fertil Soils 45:663–667.  https://doi.org/10.1007/s00374-009-0371-1 CrossRefGoogle Scholar
  81. Van Der Woude BJ, Pegtel DM, Bakker JP (1994) Nutrient limitation after long-term nitrogen fertilizer application in cut grasslands. J Appl Ecol 31:405.  https://doi.org/10.2307/2404438 CrossRefGoogle Scholar
  82. Vuylsteke A, Bergen D, Demuynck E (2014) Schaalgrootte en schaalvergroting in de Vlaamse landen tuinbouwGoogle Scholar
  83. Wander JGN, van den Berg W, van den Boogert PHJF, Lamers JG, van Leeuwen GCM, Hendrickx G, Bonants P (2007) A novel technique using the Hendrickx centrifuge for extracting winter sporangia of Synchytrium endobioticum from soil. Eur J Plant Pathol 119:165–174.  https://doi.org/10.1007/s10658-007-9156-2 CrossRefGoogle Scholar
  84. Wardle DA (2002) Communities and ecosystems : linking the aboveground and belowground components. Princeton University Press, Princeton, New JerseyGoogle Scholar
  85. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten W, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefGoogle Scholar
  86. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62.  https://doi.org/10.1007/BF00388810 CrossRefPubMedGoogle Scholar
  87. Yeates GW, Bongers T, De Goede RG et al (1993) Feeding habits in soil nematode families and genera-an outline for soil ecologists. J Nematol 25:315–331PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Safaa Wasof
    • 1
  • An De Schrijver
    • 1
    • 2
  • Stephanie Schelfhout
    • 1
  • Michael P. Perring
    • 1
    • 3
  • Elyn Remy
    • 1
  • Jan Mertens
    • 1
  • Eduardo de la Peña
    • 4
  • Nancy De Sutter
    • 5
  • Nicole Viaene
    • 4
    • 5
  • Kris Verheyen
    • 1
  1. 1.Department of Environment, Forest & Nature Lab (ForNaLab)Ghent UniversityMelle-GontrodeBelgium
  2. 2.Faculty of Science and TechnologyUniversity College GhentMelleBelgium
  3. 3.Ecosystem Restoration and Intervention Ecology (ERIE) Research Group, School of Biological SciencesThe University of Western AustraliaCrawleyAustralia
  4. 4.Department of Biology, Faculty of SciencesGhent UniversityGhentBelgium
  5. 5.Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences UnitMerelbekeBelgium

Personalised recommendations