Advertisement

Plant and Soil

, Volume 434, Issue 1–2, pp 425–440 | Cite as

Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum spicatum)

  • Heather Buckley
  • Carolyn A. Young
  • Nikki D. Charlton
  • Will Q. Hendricks
  • Beth Haley
  • Padmaja Nagabhyru
  • Jennifer A. RudgersEmail author
Regular Article
  • 109 Downloads

Abstract

Aims

Symbiotic fungi commonly increase plant acquisition of soil nutrients. Because prior work has focused on root fungi, we examined how leaf endophytes (Epichloë) influenced plant responses to fertilization and altered plant traits that may cascade to food webs and ecosystem processes.

Methods

We manipulated endophyte presence/absence in two populations of Trisetum spicatum, a wild relative of oat, under a 2 × 2 addition of soil nitrogen (N) and phosphorus (P) in the greenhouse.

Results

Endophyte symbiosis altered how plant biomass responded to soil N and how plant traits responded to soil P. Endophytes boosted the biomass gains from N-fertilization in one population. Plants from a second population had weak benefits of symbiosis, but the endophyte altered plant traits, by increasing specific leaf area under P-fertilization, root diameter under low P, and concentration of the fungal alkaloid AcAP under N fertilization. Endophyte presence suppressed the typically observed increase in root hair density in response to soil P limitation. Under low P, symbiotic plants from both populations had improved forage quality relative to symbiont-free plants, although N-fertilization had a larger effect size on forage quality than did symbiosis. Finally, the two populations differed in production of fungal alkaloids, which generally increased in response to fertilization.

Conclusions

Predicting how microbial symbionts mediate plant acquisition of nutrients requires understanding how much their effects vary among plant and endophyte genotypes. Here, the magnitude and direction of leaf symbionts’ effects on plant yield and traits varied between populations and with soil nutrient availability.

Keywords

Epichloë Mutualism Nitrogen Phosphorus Poaceae Mountain ecosystem 

Notes

Acknowledgements

Thanks to Terri Tobias and Andrea Porras-Alfaro for providing seeds from Niwot Ridge, CO. Thanks to Josh Lynn for assistance with SLA measurements. Thanks to Bonnie Watson and David Huhman (Analytical Chemistry Core Facility) at the Noble Research Institute for evaluating the chanoclavine and peramine, and Christopher Schardl at University of Kentucky for advice on analysis of foliar aminopyrrolizidines. Comments from two anonymous reviewers and Section Editor Thomas W. Kuyper improved the manuscript. This work was funded by NSF DEB#1354972 and support from the Rocky Mountain Biological Laboratory to J.R. and supported the undergraduate thesis work of H.B.

Supplementary material

11104_2018_3848_MOESM1_ESM.docx (6.2 mb)
ESM 1 (DOCX 6368 kb)

References

  1. Ahlholm JU, Helander M, Henriksson J, Metzler M, Saikkonen K (2002a) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56:1566–1573CrossRefGoogle Scholar
  2. Ahlholm JU, Helander M, Lehtimaki S, Wali P, Saikkonen K (2002b) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183CrossRefGoogle Scholar
  3. Bacon CW, White JF Jr (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca RatonGoogle Scholar
  4. Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) (2007) Flora of North America volume 24: North of Mexico: Magnoliophyta: Commelinidae (in part): Poaceae, part 1. In: Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico, New York.Google Scholar
  5. Bell-Dereske L, Takacs-Vesbach C, Kivlin SN, Emery SM, Rudgers JA (2017) Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiology Ecology 93(6).  https://doi.org/10.1093/femsec/fix036
  6. Berry D, Takach JE, Schardl CL, Charlton ND, Scott B, Young CA (2015) Disparate independent genetic events disrupt the secondary metabolism gene perA in certain symbiotic Epichloë species. Appl Environ Microbiol 81:2797–2807CrossRefGoogle Scholar
  7. Boot RGA, Mensink M (1990) Size and morphology of root systems of perennial grasses from contrasting habitats as affected by nitrogen supply. Plant Soil 129:291–299CrossRefGoogle Scholar
  8. Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA (2014) Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol Ecol 90:276–289.  https://doi.org/10.1111/1574-6941.12393 CrossRefGoogle Scholar
  9. Cheplick GP, Faeth SH (2009) Ecology and evolution of grass-endophyte symbiosis. Oxford University Press, OxfordCrossRefGoogle Scholar
  10. Chu-chou M, Guo G, An ZQ, Hendrix JW, Ferris RS, Siegel MR, Dougherty CT, Burrus PB (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637CrossRefGoogle Scholar
  11. Clarke KR, Gorley RN (2009) Primer version 6.1.10 user manual and tutorial. Primer-E, PlymouthGoogle Scholar
  12. Craven KD, Blankenship JD, Leuchtmann A, Hignight K, Schardl CL (2001) Hybrid fungal endophytes symbiotic with the grass Lolium pratense. Sydowia 53:44–73Google Scholar
  13. Ding N, Kupper JV, DH MN Jr (2015) Phosphate source interacts with endophyte strain to influence biomass and root system architecture in tall fescue. Agron J 107:662–670.  https://doi.org/10.2134/agronj14.0135 CrossRefGoogle Scholar
  14. Faulkner JR, Hussaini SR, Blankenship JD, Pal S, Branan BM, Grossman RB, Schardl CL (2006) On the sequence of bond formation in loline alkaloid biosynthesis. Chembiochem 7:1078–1088CrossRefGoogle Scholar
  15. Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil 191:181–188CrossRefGoogle Scholar
  16. Garcia-Parisi PA, Lattanzi FA, Grimoldi AA, Druille M, Omacini M (2017) Three symbionts involved in interspecific plant-soil feedback: epichloid endophytes and mycorrhizal fungi affect the performance of rhizobia-legume symbiosis. Plant Soil 412:151–162.  https://doi.org/10.1007/s11104-016-3054-3 CrossRefGoogle Scholar
  17. Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 45:293–296.  https://doi.org/10.1038/nature06592 CrossRefGoogle Scholar
  18. Guo J, McCulley RL, DH MN Jr (2015) Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Front Plant Sci 6:183.  https://doi.org/10.3389/fpls.2015.00183 Google Scholar
  19. Kering MK, Butler TJ, Biermacher JT, Mosali J, Guretzky JA (2013) Effect of potassium and nitrogen fertilizer on switchgrass productivity and nutrient removal rates under two harvest systems on a low potassium soil. Bioenergy Res 6:329–335CrossRefGoogle Scholar
  20. Krauss J, Harri SA, Bush L, Husi R, Bigler L, Power SA, Muller CB (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Funct Ecol 21:107–116CrossRefGoogle Scholar
  21. Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604CrossRefGoogle Scholar
  22. Lewis GC (2004) Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Ann Appl Biol 144:53–63.  https://doi.org/10.1111/j.1744-7348.2004.tb00316.x CrossRefGoogle Scholar
  23. Li X, Ren A, Han R, Yin L, Wei M, Gao Y (2012) Endophyte-mediated effects on the growth and physiology of Achnatherum sibiricum are conditional on both N and P availability. PLoS One 7:e48010.  https://doi.org/10.1371/journal.pone.0048010 CrossRefGoogle Scholar
  24. Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467.  https://doi.org/10.1046/j.1365-3040.2001.00695.x CrossRefGoogle Scholar
  25. Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320.  https://doi.org/10.1111/j.2007.0030-1299.15973.x CrossRefGoogle Scholar
  26. Malinowski DP, Belesky DP (1999) Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J Plant Nutr 22:835–853CrossRefGoogle Scholar
  27. Malinowski DP, Belesky DP, Hill NS, Baligar VC, Fedders JM (1998) Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea Schreb.). Plant Soil 198:53–61CrossRefGoogle Scholar
  28. Malinowski DP, Brauer DK, Belesky DP (1999) The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci 183:53–60Google Scholar
  29. Newman JA, Abner ML, Dado RG, Gibson DJ, Brookings A, Parsons AJ (2003) Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Glob Chang Biol 9:425–437CrossRefGoogle Scholar
  30. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793CrossRefGoogle Scholar
  31. Omacini M, Semmartin M, Perez LI, Gundel PE (2012) Grass-endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279.  https://doi.org/10.1016/j.apsoil.2011.10.012 CrossRefGoogle Scholar
  32. Pan J, Bhardwaj M, Faulkner JR, Nagabhyru P, Charlton ND, Higashi RM, Miller AF, Young CA, Grossman RB, Schardl CL (2014) Ether bridge formation in loline alkaloid biosynthesis. Phytochemistry 98:60–68CrossRefGoogle Scholar
  33. Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234.  https://doi.org/10.1071/bt12225 CrossRefGoogle Scholar
  34. Pittman JJ, Arnall DB, Interrante SM, Wang N, Raun WR, Butler TJ (2016) Bermudagrass, wheat, and tall fescue crude protein forage estimation using mobile-platform active-spectral and canopy-height data. Crop Sci 56:870–881.  https://doi.org/10.2135/cropsci2015.05.0274 CrossRefGoogle Scholar
  35. Ranelli LB, Hendricks WQ, Lynn JS, Kivlin SN, Rudgers JA (2015) Biotic and abiotic predictors of fungal colonization in grasses of the Colorado Rockies. Divers Distrib 21:962–976.  https://doi.org/10.1111/ddi.12310 CrossRefGoogle Scholar
  36. Rasmussen S, Lane GA, Mace W, Parsons AJ, Fraser K, Xue H (2011) The use of genomics and metabolomics methods to quantify fungal endosymbionts and alkaloids in grasses. In: Hardy N, Hall R (eds) Plant Metabolomics. Methods in Molecular Biology. Methods and Protocols, vol 860. Humana Press.Google Scholar
  37. Ren AZ, Gao YB, Zhou F (2007) Response of Neotyphodium lolii-infected perennial ryegrass to phosphorus deficiency. Plant Soil Environ 53:113–119CrossRefGoogle Scholar
  38. Ren AZ, Gao YB, Wang W, Wang JL, Zhao NX (2009) Influence of nitrogen fertilizer and endophyte infection on ecophysiological parameters and mineral element content of perennial ryegrass. J Integr Plant Biol 51:75–83.  https://doi.org/10.1111/j.1744-7909.2008.00721.x CrossRefGoogle Scholar
  39. Ren AZ, Li X, Han R, Yin LJ, Wei MY, Gao YB (2011) Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant Soil 346:363–373.  https://doi.org/10.1007/s11104-011-0824-9 CrossRefGoogle Scholar
  40. Ren A, Wei M, Yin L, Wu L, Zhou Y, Li X, Gao Y (2014) Benefits of a fungal endophyte in Leymus chinensis depend more on water than on nutrient availability. Environ Exp Bot 108:71–78.  https://doi.org/10.1016/j.envexpbot.2013.11.019 CrossRefGoogle Scholar
  41. Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143.  https://doi.org/10.1071/cp07125 CrossRefGoogle Scholar
  42. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330.  https://doi.org/10.1111/j.1469-8137.2009.02773.x CrossRefGoogle Scholar
  43. Rogers JK, Young CA, Mosali J, Norton SL, Hopkins AA (2014) Stockpiled forage yield and nutritive value of summer-dormant and summer-active tall fescue in a marginal environment. Forage and Grazinglands 12:1–9.  https://doi.org/10.2134/FG-2014-0065-RS
  44. Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996CrossRefGoogle Scholar
  45. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  46. Shi C, An S, Yao Z, Young CA, Panaccione DG, Lee ST, Schardl CL, Li C (2018) Toxin-producing Epichloë bromicola strains symbiotic with the forage grass, Elymus dahuricus, in China. Mycologia 109:847–859CrossRefGoogle Scholar
  47. Shymanovich T, Charlton ND, Musso AM, Scheerer J, Cech NB, Faeth SH, Young CA (2017) Interspecific and intraspecific hybrid Epichloë species symbiotic with the north American native grass Poa alsodes. Mycologia 109:1–16.  https://doi.org/10.1080/00275514.2017.1340779 CrossRefGoogle Scholar
  48. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd Edition. Academic Press, p 800.Google Scholar
  49. Song M, Chai Q, Li X, Yao X, Li C, Christensen MJ, Nan Z (2015) An asexual Epichloe endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 387:153–165.  https://doi.org/10.1007/s11104-014-2289-0 CrossRefGoogle Scholar
  50. Takach JE, Young CA (2014) Alkaloid genotype diversity of tall fescue endophytes. Crop Sci 54:667–678.  https://doi.org/10.2135/cropsci2013.06.0423 CrossRefGoogle Scholar
  51. van de Wiel CCM, van der Linden CG, Scholten OE (2016) Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica 207:1–22.  https://doi.org/10.1007/s10681-015-1572-3. CrossRefGoogle Scholar
  52. Vazquez-de-Aldana BR, Garcia-Ciudad A, Garcia-Criado B, Vicente-Tavera S, Zabalgogeazcoa I (2013) Fungal endophyte (Epichloe festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS One 8:e84539.  https://doi.org/10.1371/journal.pone.0084539 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Noble Research Institute, LLCArdmoreUSA
  3. 3.Rocky Mountain Biological LaboratoryGothicUSA
  4. 4.Department of Plant PathologyUniversity of KentuckyLexingtonUSA

Personalised recommendations