Plant and Soil

, Volume 432, Issue 1–2, pp 345–357 | Cite as

Impact of local forest composition on soil fungal communities in a mixed boreal forest

  • Mélissande NagatiEmail author
  • Mélanie Roy
  • Sophie Manzi
  • Franck Richard
  • Annie Desrochers
  • Monique Gardes
  • Yves Bergeron
Regular Article



While fungi are key drivers of the carbon cycle and obligate symbionts of trees, the link between plant-fungal interactions and landscape vegetation changes has been largely overlooked. Our aim was to test whether a local difference in dominant tree species would shape the composition of soil fungi communities.


Fungal communities were described using next-generation DNA sequencing. Composite soil samples were collected in four paired sites (represented by one pure aspen stand and one pure spruce stand) and soil nutriments were measured.


Of the more than 1119 OTUs, 31.6% were Ascomycota while 27.8% were Basidiomycota, 15% were ectomycorrhizal fungi whereas 19.7% were saprotrophic. Communities displayed high species turnover among forest types rather than differences in species richness. Among tested predictors, the dominant tree species explained around 11% of fungal community variation. pH and soil nutrients were also strong predictors of fungal communities.


Our study revealed strong correlations between dominant tree species and fungal communities at a local scale and raised questions regarding the impact of fungal communities on forest soil nutrient dynamics.


Black spruce-feather moss Fungal diversity Soil ecology Picea mariana Populus tremuloides NGS 



The authors sincerely thank Evick Mestre, Danielle Charon and Raynald Julien for their assistance in the field, Francine Tremblay for laboratory access, Lucie Zinger for assistance with bioinformatics and sequence analyses, Benjamin Durrington for editing the text and WFJ Parsons for English revision. We are grateful to our internal reviewer, Julien Demenois (CIRAD), for helpful advice and comments on a previous version of the manuscript. We are grateful to the Genotoul Bioinformatics Platform, Toulouse Midi-Pyrenees, for providing computing and storage resources. We also thank two anonymous reviewers and section editor Thomas W. Kuyper for their relevant and helpful comments on previous versions of the manuscript.


This work was supported by Mitacs Acceleration in collaboration with Norbord Inc. [IT066831], the UQAT-UQAM-NSERC Chair in sustainable forest management, the French Laboratory of Excellence project “TULIP” (ANR-10-LABX-41; ANR-11-IDEX-0002-02), and University Paul Sabatier for travel fellowships.

Supplementary material

11104_2018_3806_Fig4_ESM.png (311 kb)
Supplementary Figure 1

Location of study sites. (PNG 310 kb)

11104_2018_3806_MOESM1_ESM.tif (828 kb)
High Resolution (TIF 827 kb)
11104_2018_3806_Fig5_ESM.png (321 kb)
Supplementary Figure 2

OTU accumulation curves of fungal communities from black spruce organic layer (red), black spruce mineral layer (blue), trembling aspen organic layer (orange) and trembling aspen mineral layer (green), vertical bars represent standard errors of the mean. (PNG 321 kb)

11104_2018_3806_MOESM2_ESM.tiff (1.8 mb)
High Resolution (TIFF 1801 kb)
11104_2018_3806_Fig6_ESM.png (2.4 mb)
Supplementary Figure 3

Number of OTUs by order of Ascomycota and by sample type (TA-M = trembling aspen mineral layer, TA-O = trembling aspen organic layer, BS-M = black spruce mineral layer and BS-O = black spruce organic layer). (PNG 2500 kb)

11104_2018_3806_MOESM3_ESM.tif (294 kb)
High Resolution (TIF 294 kb)
11104_2018_3806_Fig7_ESM.png (2.5 mb)
Supplementary Figure 4

Number of OTUs by genera of Basidiomycota and by sample type (TA-M = trembling aspen mineral layer, TA-O = trembling aspen organic layer, BS-M = black spruce mineral layer and BS-O = black spruce organic layer). (PNG 2597 kb)

11104_2018_3806_MOESM4_ESM.tif (322 kb)
High Resolution (TIF 321 kb)
11104_2018_3806_Fig8_ESM.png (93 kb)
Supplementary Figure 5

Venn diagram representing shared fungal OTUs between black spruce organic layer (BS-O), black spruce mineral layer (BS-M), trembling aspen organic layer (TA-O) and trembling aspen mineral layer (TA-M). (PNG 92 kb)

11104_2018_3806_MOESM5_ESM.tif (2.5 mb)
High Resolution (TIF 2524 kb)
11104_2018_3806_MOESM6_ESM.docx (10 kb)
ESM 1 (DOCX 10 kb)


  1. Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M, Kurina O, Ostonen I, Jõgeva J, Halapuu S, Põldmaa K, Toots M, Truu J, Larsson K-H, Kõljalg U (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences, PlutoF—a Web Based Workbench for Ecological and Taxonomic Research, with an Online Implementation for Fungal ITS Sequences. Evol Bioinforma 6:189–196. CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefGoogle Scholar
  3. Arbour M-L, Bergeron Y (2011) Effect of increased Populus cover on Abies regeneration in the Picea-feathermoss boreal forest. J Veg Sci 22:1132–1142. CrossRefGoogle Scholar
  4. Bahram M, Harend H, Tedersoo L (2014) Network perspectives of ectomycorrhizal associations. Fungal Ecol 7:70–77. CrossRefGoogle Scholar
  5. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, OxfordGoogle Scholar
  6. Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184. CrossRefGoogle Scholar
  7. Bent E, Kiekel P, Brenton R, Taylor DL (2011) Root-associated ectomycorrhizal Fungi shared by various boreal Forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different Fungi with host growth responses. Appl Environ Microbiol 77:3351–3359. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Booth MG (2004) Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest: mycorrhizal networks and plant competition. Ecol Lett 7:538–546. CrossRefGoogle Scholar
  9. Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E (2016) obitools : a unix-inspired software package for DNA metabarcoding. Mol Ecol Resour 16:176–182. CrossRefPubMedGoogle Scholar
  10. Brandt JP, Flannigan MD, Maynard DG, Thompson ID, Volney WJA (2013) An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ Rev 21:207–226. CrossRefGoogle Scholar
  11. Carter MR, Gregorich EG (eds) (2008) Soil sampling and methods of analysis, second edn. Canadian Society of Soil Science. CRC Press, Boca Raton, FL, USAGoogle Scholar
  12. Cavard X, Bergeron Y, Chen HYH, Paré D (2011) Effect of forest canopy composition on soil nutrients and dynamics of the understorey: mixed canopies serve neither vascular nor bryophyte strata. J Veg Sci 22:1105–1119. CrossRefGoogle Scholar
  13. Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217. CrossRefGoogle Scholar
  14. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618. CrossRefGoogle Scholar
  15. Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Can J Bot 84:1509–1519. CrossRefGoogle Scholar
  16. Davey ML, Skogen MJ, Heegaard E, Halvorsen R, Kauserud H, Ohlson M (2017) Host and tissue variations overshadow the response of boreal moss-associated fungal communities to increased nitrogen load. Mol Ecol 26:571–588. CrossRefPubMedGoogle Scholar
  17. Drobyshev I, Gewehr S, Berninger F, Bergeron Y (2013) Species-specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. J Ecol 101:231–242. CrossRefGoogle Scholar
  18. Environment Canada (2017) Canadian climate normals 1971-2000. Environment Canada, National Meteorological Service, Downsview, ON. Accessed November 2017.
  19. Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, Erséus C, Gusarov VI, Edwards ME, Johnsen A, Stenøien HK, Hassel K, Kauserud H, Yoccoz NG, Bråthen KA, Willerslev E, Taberlet P, Coissac E, Brochmann C (2012) New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol 21:1821–1833. CrossRefPubMedGoogle Scholar
  20. Fenton NJ, Bergeron Y (2006) Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. J Veg Sci 17:65–76. CrossRefGoogle Scholar
  21. Fenton NJ, Bergeron Y (2008) Does time or habitat make old-growth forests species rich? Bryophyte richness in boreal Picea mariana forests. Biol Conserv 141:1389–1399. CrossRefGoogle Scholar
  22. Fernandez CW, Nguyen N, Stefański A, Han Y, Hobbie SE, Montgomery RA, Reich PB, Kennedy PG (2017) Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob Change Biol 23(4):1598–1609. CrossRefGoogle Scholar
  23. Foudyl-Bey S, Brais S, Drouin P (2016) Litter heterogeneity modulates fungal activity, C mineralization and N retention in the boreal forest floor. Soil Biol Biochem 100:264–275. CrossRefGoogle Scholar
  24. Gagnon R (1989) Maintien après feu de limites abruptes entre des peuplements d’épinettes noires (Picea mariana) et des formations de feuillus intolérants (Populus tremuloides et Betula papyrifera) dans la région du Saguenay–Lac-Saint-Jean (Québec). Nat Can 116:117–124Google Scholar
  25. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349:819–822. CrossRefGoogle Scholar
  26. Hirose D, Hobara S, Matsuoka S, Kato K, Tanabe Y, Uchida M, Kudoh S, Osono T (2016) Diversity and community assembly of moss-associated fungi in ice-free coastal outcrops of continental Antarctica. Fungal Ecol 24:94–101. CrossRefGoogle Scholar
  27. Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440. CrossRefPubMedGoogle Scholar
  28. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. CrossRefGoogle Scholar
  29. Kyaschenko J, Clemmensen KE, Karltun E, Lindahl BD (2017) Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol Lett 20:1546–1555. CrossRefPubMedGoogle Scholar
  30. Laquerre S, Harvey BD, Leduc A (2011) Spatial analysis of response of trembling aspen patches to clearcutting in black spruce-dominated stands. For Chron 87:77–85. CrossRefGoogle Scholar
  31. Légaré S, Paré D, Bergeron Y (2005) Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil 275:207–220. CrossRefGoogle Scholar
  32. Lindahl BO, Taylor AFS, Finlay RD (2002) Defining nutritional constraints on carbon cycling in boreal forests – towards a less `phytocentric’ perspective. Plant Soil 242:123–135. CrossRefGoogle Scholar
  33. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416. CrossRefGoogle Scholar
  34. Messaoud Y, Bergeron Y, Asselin H (2007a) Reproductive potential of balsam fir (Abies balsamea), white spruce (Picea glauca), and black spruce (P. mariana) at the ecotone between mixedwood and coniferous forests in the boreal zone of western Quebec. Am J Bot 94:746–754. CrossRefPubMedGoogle Scholar
  35. Messaoud Y, Bergeron Y, Leduc A (2007b) Ecological factors explaining the location of the boundary between the mixedwood and coniferous bioclimatic zones in the boreal biome of eastern North America. Glob Ecol Biogeogr 16:90–102. CrossRefGoogle Scholar
  36. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed.). Mycorrhizal functioning: an integrative plant-fungal process.Chapman & Hall, London. pp. 357–423Google Scholar
  37. Mucha J, Peay KG, Smith DP, Reich PB, Stefański A, Hobbie SE (2018) Effect of simulated climate warming on the ectomycorrhizal fungal Community of Boreal and Temperate Host Species Growing near Their Shared Ecotonal Range Limits. Microb Ecol 75:348–363. CrossRefPubMedGoogle Scholar
  38. Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707. CrossRefGoogle Scholar
  39. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. CrossRefGoogle Scholar
  40. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and ITS implications for molecular species identification. Evol Bioinformatics Online 4:193–201Google Scholar
  41. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R package version 2:4–5. https://cran.r-project. .org/package=vegan
  42. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. CrossRefGoogle Scholar
  43. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria.
  44. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263. CrossRefGoogle Scholar
  45. Robitaille A, Saucier J-P (1996) Land district, ecophysiographic units and areas: the landscape mapping of the ministère des ressources naturelles du Québec. In: global to local: ecological land classification. Springer, Dordrecht, pp 127–148Google Scholar
  46. Santalahti M, Sun H, Jumpponen A, Pennanen T, Heinonsalo J (2016) Vertical and seasonal dynamics of fungal communities in boreal scots pine forest soil. FEMS Microbiol Ecol 92:fiw170. CrossRefPubMedGoogle Scholar
  47. Schmidt SK, Wilson KL, Meyer AF, Gebauer MM, King AJ (2008) Phylogeny and ecophysiology of opportunistic “snow molds” from a subalpine forest ecosystem. Microb Ecol 56:681–687. CrossRefPubMedGoogle Scholar
  48. Shi L-L, Mortimer PE, Slik JWF, Zou X-M, Xu J, Feng W-T, Qiao L (2014) Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers 64:305–315. CrossRefGoogle Scholar
  49. Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D (2007) Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–1637. CrossRefPubMedGoogle Scholar
  50. Smith JE, Molina R, Huso MM, Luoma DL, McKay D, Castellano MA, Lebel T, Valachovic Y (2002) Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A. Can J Bot 80:186–204. CrossRefGoogle Scholar
  51. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Taudiere A, Munoz F, Lesne A, Monnet A-C, Bellanger J-M, Selosse M-A, Moreau P-A, Richard F (2015) Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica. Front Plant Sci 6:881. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG, Leigh MB (2010) Structure and resilience of fungal communities in Alaskan boreal forest soils. Can J For Res 40:1288–1301. CrossRefGoogle Scholar
  54. Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2013) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84:3–20. CrossRefGoogle Scholar
  55. Tedersoo L, Bahram M, Dickie IA (2014) Does host plant richness explain diversity of ectomycorrhizal fungi? Re-evaluation of Gao et al. (2013) data sets reveals sampling effects. Mol Ecol 23:992–995. CrossRefPubMedGoogle Scholar
  56. Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170. CrossRefPubMedGoogle Scholar
  57. Thormann MN (2006) The role of fungi in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin Heidelberg, pp 101–123CrossRefGoogle Scholar
  58. Treseder KK, Bent E, Borneman J, McGuire KL (2014) Shifts in fungal communities during decomposition of boreal forest litter. Fungal Ecol 10:58–69. CrossRefGoogle Scholar
  59. Truong C, Mujic AB, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva PA, Fernández N, Escobar JM, Moretto A, Palfner G, Pfister D, Nouhra E, Swenie R, Sánchez-García M, Matheny PB, Smith ME (2017) How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214:913–919. CrossRefPubMedGoogle Scholar
  60. Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447. CrossRefPubMedGoogle Scholar
  61. White, T.J., Bruns TD, Lee SB, Taylor J, AM Innis , H Gelfand D, Sninsky J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, DH Gelfand DH, Sninsky JJ, White TJ (eds). PCR protocols: a guide to methods and applications. Academic Press, New York. pp. 315–322Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire Evolution et Diversité Biologique, UMR5174Université Paul Sabatier – CNRSToulouse cedexFrance
  2. 2.Chaire industrielle UQAM-UQAT en aménagement forestier durable, Institut de recherche sur les forêtsUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive UMR5175Montpellier cedex 5France

Personalised recommendations