Plant and Soil

, Volume 428, Issue 1–2, pp 153–162 | Cite as

Differential effects of iron starvation and iron excess on nickel uptake kinetics in two Iranian nickel hyperaccumulators, Odontarrhena bracteata and Odontarrhena inflata

  • Roshanak Mohseni
  • Seyed Majid GhaderianEmail author
  • Rasoul Ghasemi
  • Henk Schat
Regular Article



To characterize Ni hyperaccumulation mechanisms in naturally Ni-hyperaccumulating Odontarrhena species, Ni uptake kinetics, and the effect of Fe starvation and Fe or Zn excess thereon, were investigated in the Iranian serpentine endemics O. bracteata (one population) and O. inflata (two populations).


Plants were exposed to a series of Ni concentrations for 4 h, and Ni uptake rates were plotted against the Ni concentration in the solution. Kinetic parameters, Km and Vmax, were calculated from Lineweaver-Burke plots.


Ni uptake consistently showed Michaelis–Menten kinetics. Under normal Fe supply the Km was not significantly different between species or populations, however, the Vmax was 3-fold higher in O. bracteata and O. inflata from Baneh than in O. inflata from Marivan. The rate of Ni translocation to the shoot was similar in all of the species/populations. Fe starvation (1 wk) significantly increased the Vmax for Ni uptake in O. bracteata, but not in O. inflata, and a very similar increase in Fe uptake capacity in all the species/populations. Fe excess in the nutrient solution significantly increased the Km for Ni uptake in O. bracteata, but not in O. inflata. Zn excess in the nutrient solution (300 μM) marginally inhibited Ni uptake in O. inflata, but not in O. bracteata.


Ni uptake seems to proceed via a Fe deficiency-inducible Fe transporter in O. bracteata, but not in O. inflata. Ni root-to-shoot translocation seems to be mediated by a Fe deficiency-inducible Fe translocation mechanism in all of the species/populations.


Nickel uptake. Fe transporter. Hyperaccumulation. Serpentine soil. Odontarrhena bracteata. Odontarrhena inflata. Alyssum 



We would like to thank the Graduate School of University of Isfahan for providing research facilities for this study.


  1. Adamidis GC, Aloupi M, Kazakou E, Dimitrakopoulos PG (2014) Intra-specific variation in Ni tolerance, accumulation and translocation patterns in the Ni-hyperaccumulator Alyssum lesbiacum. Chemosphere 95:496–502CrossRefPubMedGoogle Scholar
  2. Aschmann SG, Zasoski RJ (1987) Nickel and rubidium uptake by whole oat plants in solution culture. Physiol Plant 71:191–196CrossRefGoogle Scholar
  3. Assunção AGL, Bleeker P, Bookum WM, Vooijs R, Schat H (2008) Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil 303:289–299CrossRefGoogle Scholar
  4. Assunção AGL, Bookum WM, Nelissen HJ, Vooijs R, Schat H, Ernst WH (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419CrossRefGoogle Scholar
  5. Assunção AGL, Martins PDAC, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226CrossRefGoogle Scholar
  6. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements, a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  7. Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants—a feasibility study. In: situ bioreclamation, pp 600–605CrossRefGoogle Scholar
  8. Broadhurst CL, Chaney RL (2016) Growth and metal accumulation of an Alyssum murale nickel Hyperaccumulator ecotype co-cropped with Alyssum montanum and perennial ryegrass in serpentine soil. Front Plant Sci 7:451CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland ORGoogle Scholar
  10. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford UKGoogle Scholar
  11. Cataldo DA, Garland TR, Wildung RE (1978) Nickel in plants. Uptake kinetics using intact soybean seedlings. Plant Physiol 62:563–565CrossRefPubMedPubMedCentralGoogle Scholar
  12. Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4:464–476CrossRefPubMedGoogle Scholar
  13. Cornu JY, Deinlein U, Höreth S, Braun M, Schmidt H, Weber M, Persson DP, Husted S, Schjoerring JK, Clemens S (2015) Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. New Phytol 206:738–750CrossRefPubMedGoogle Scholar
  14. Deng THB, Cloquet C, Tang YT, Sterckeman T, Echevarria G, Estrade N, Morel JL, Qiu RL (2014) Nickel and zinc isotope fractionation in hyperaccumulating and non-accumulating plants. Environ Sci Technol 48:11926–11933CrossRefPubMedGoogle Scholar
  15. Elbaz B, Knaani S, David-Assael O, Mizrachy-Dagri M, Saul H, Brook E, Berezin I, Shaul O (2006) High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger. Plant Cell Environ 29:1179–1190CrossRefPubMedGoogle Scholar
  16. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091CrossRefPubMedGoogle Scholar
  17. Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. The. Plant J 49:1–15CrossRefPubMedGoogle Scholar
  18. Gerendás J, Sattelmacher B (1997) Significance of Ni supply for growth, urease activity and the concentrations of urea, amino acids and mineral nutrients of urea-grown plants. Plant Soil 190:153–162CrossRefGoogle Scholar
  19. Ghaderian SM, Mohtadi A, Rahiminejad MR, Baker AJM (2007a) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut 145:293–298CrossRefPubMedGoogle Scholar
  20. Ghaderian SM, Mohtadi A, Rahiminejad R, Reeves RD, Baker AJM (2007b) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil 293:91–97CrossRefGoogle Scholar
  21. Ghasemi R, Ghaderian SM, Krämer U (2009) Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum. New Phytol 184:566–580CrossRefPubMedGoogle Scholar
  22. Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. The Plant J 57:1116–1127CrossRefPubMedGoogle Scholar
  23. Halimaa P, Lin YF, Ahonen VH, Blande D, Clemens S, Gyenesei A, Häikiö E, Kärenlampi SO, Laiho A, Aarts MG Pursiheimo JP (2014) Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation. Environ Sci Technol 48:3344–3353CrossRefPubMedGoogle Scholar
  24. Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259CrossRefPubMedGoogle Scholar
  25. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395CrossRefPubMedGoogle Scholar
  26. Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84CrossRefGoogle Scholar
  27. Jammes F, Hu HC, Villiers F, Bouten R, Kwak JM (2011) Calcium-permeable channels in plant cells. The FEBS J 278:4262–4276CrossRefPubMedGoogle Scholar
  28. Kim YY, Yang YY, Lee Y (2002) Pb and cd uptake in rice roots. Physiol Plant 116:368–372CrossRefGoogle Scholar
  29. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefPubMedGoogle Scholar
  30. Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698CrossRefPubMedGoogle Scholar
  31. Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60CrossRefGoogle Scholar
  33. Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. J Exp Bot 65:1551–1564CrossRefPubMedGoogle Scholar
  34. Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Clemencia Zambrano M, Ma JF, Kochian LV (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in cd hyperaccumulation. Plant J 78:398–410CrossRefPubMedGoogle Scholar
  35. Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793–801CrossRefPubMedGoogle Scholar
  36. Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52:1433–1442CrossRefPubMedGoogle Scholar
  37. Oomen RJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MG, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650CrossRefPubMedGoogle Scholar
  38. Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/cd hyperaccumulator Thlaspi caerulescens. Pro Nat Acad Sci 97(9):4956–4960CrossRefGoogle Scholar
  40. Puschenreiter M, Schnepf A, Molina MI, Fitz WJ, Horak O, Klepp J, Schrefl T, Lombi E, Wenzel WW (2005) Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Experimental evidence and modeling. Plant Soil 271:205–218CrossRefGoogle Scholar
  41. Redjala T, Sterckeman H, Skiker S, Echevarria G (2010) Contribution of apoplast and symplast to short term nickel uptake by maize and Leptoplax emarginata roots. Environ Exp Bot 68:99–106CrossRefGoogle Scholar
  42. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  43. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In Phytoremediation of metal-contaminated soils. Springer, Dordrecht, pp 25–52Google Scholar
  44. Reeves RD, Brooks RR, Dudley TR (1983) Uptake of nickel by species of Alyssum, Bornmuellera, and other genera of old world Tribus Alysseae. Taxon 32:184–192CrossRefGoogle Scholar
  45. Richau KH, Schat H (2009) Intraspecific variation of nickel and zinc accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens. Plant Soil 314:253–262CrossRefGoogle Scholar
  46. Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Nati Acad Sci 97:12356–12360CrossRefGoogle Scholar
  47. Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277CrossRefGoogle Scholar
  48. Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167CrossRefPubMedPubMedCentralGoogle Scholar
  49. van der Ent A, AJM B, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction Plant Soil. 362:319–334Google Scholar
  50. Verlière G, Heller R (1981) Effets du nickel sur la croissance des racines isolées de Leucaena leucocephala (Lam.) de Wit et caractères de son absorption. Physiologie Végétale 19:263–275Google Scholar
  51. Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233CrossRefPubMedPubMedCentralGoogle Scholar
  52. Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281CrossRefPubMedGoogle Scholar
  53. Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31:755–762CrossRefPubMedGoogle Scholar
  54. Yanqun Z, Yuan L, Schvartz C, Langlade L, Fan L (2004) Accumulation of Pb, cd, cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environ Int 30:567–576CrossRefPubMedGoogle Scholar
  55. Zhang Q, Smith AF, Sekimoto H, Reid RJ (2001) Effect of membrane surface charge on nickel uptake by purified mung bean root protoplasts. Planta 213:788–793CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Roshanak Mohseni
    • 1
  • Seyed Majid Ghaderian
    • 1
    Email author
  • Rasoul Ghasemi
    • 2
  • Henk Schat
    • 3
  1. 1.Department of Biology, Faculty of SciencesUniversity of IsfahanIsfahanIran
  2. 2.Department of Biology, Faculty of SciencesPayame Noor UniversityTehranIran
  3. 3.Department of Ecological Science, Faculty of Earth and Life SciencesVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations