Plant and Soil

, Volume 425, Issue 1–2, pp 433–440 | Cite as

Fallen fruits stimulate decomposition of leaf litter of dominant species in NW Patagonia shrublands

  • Manuel de Paz
  • Miriam E. Gobbi
  • Estela Raffaele
Regular Article


Background and aims

Leaf-litter decomposition rate (k L ) regulates nutrient dynamics and is affected at microsite level by species traits, soil biota and microclimate conditions. Fallen fruits form part of the litter and some, particularly fleshy fruits, contain large quantities of nutrients and sugar. We estimated the amount of fruit fall to litter, and evaluated the effect of its decomposition and sugar content on k L in dominant species of NW Patagonia shrublands.


We selected six woody species, four with fleshy and two with dry fruit. We followed 224 decomposition bags with leaf or leaf+fruit throughout 1 year. Fruit-litter and fruit sugar content were also measured.

Results and conclusions

Fleshy fruit decomposition rate was associated with changes in k L , while no effects of dry fruit on k L were registered. We found that three of the fleshy fruits (R. cucullatum, R. rubiginosa and S. patagonicus) had a positive influence on k L due to their sugar content. In contrast, Berberis microphylla fruit had a negative effect on k L , probably due to the presence of antimicrobial substances in the fruit. Considering the abundance of these species and their copious fruit production, the fleshy fruits could play an important role in determining soil fertility.


Litter quality Dry fruit Fleshy fruit Sugar Fruit production 



This study was funded by Universidad Nacional del Comahue (B103), MINCyT (PROEVO 40-B-189), CONICET (PIP-5066), MAGyP (PIA10118) and YPF (4 × 4 Ford Ranger donation). Thanks are due to M. Carruitero, L. Aput, and C. Tur for field assistance and to Dr. Marcelo Barrera and Dr. Juan Cabrera for reviewing the manuscript.


  1. Adamczak A, Buchwald W, Zieliński J, Mielcarek S (2012) Flavonoid and organic acid content in rose hips (Rosa L., sect. Caninae dc. Em. Christ.) Acta Biol Cracov Ser Bot 54(1):105–112Google Scholar
  2. Aizen MA, Ezcurra C (1998) High incidence of plant-animal mutualism in the woody flora of the temperate forest of Southern South America: biogeographical origin and present ecological significance. Ecol Austral 8:217–236Google Scholar
  3. Araya Rojas, M (2006) Estudio químico de Berberis colletioides Lechl. Departamento de Química. Punta Arenas (Chile), Universidad Nacional de Magallanes. Tesis de grado: 66Google Scholar
  4. Arena ME, Vater G, Peri P (2003) Fruit production of Berberis buxifolia Lam. in Tierra del Fuego. HortScience 38(2):200–202Google Scholar
  5. Arena ME, Curvetto N (2008) Berberis buxifolia fruiting: Kinetic growth behavior and evolution of chemical properties during the fruiting period and different growing seasons. Sci Hortic 118(2):120–127CrossRefGoogle Scholar
  6. Arena ME, Giordani E, Radice S (2011) Flowering, fruiting and leaf and seed variability in Berberis buxifolia, a native Patagonian fruit species. In: Marin L, Kovac D (eds) Native species: identification, conservation and restoration. Nova Sciences Publishers, New YorkGoogle Scholar
  7. Arena ME, Postemsky P, Curvetto NR (2012) Accumulation patterns of phenolic compounds during fruit growth and ripening of Berberis buxifolia, a native Patagonian species. N Z J Bot 50:15–28CrossRefGoogle Scholar
  8. Arena ME, Zuleta A, Dyner L, Constenla D, Ceci L, Curvetto N (2013) Berberis buxifolia fruit growth and ripening: evolution in sugar and organic acid contents. Sci Hortic 158:52–58CrossRefGoogle Scholar
  9. Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558CrossRefPubMedGoogle Scholar
  10. Bocock KL, Gilbert O, Capstick CK, Twinn DC, Waid JS, Woodman MJ (1960) Changes in leaf litter when placed on the surface of soils with contrasting humus types. Eur J Soil Sci 11(1):1–9CrossRefGoogle Scholar
  11. Cavallero L, Raffaele E, Aizen MA (2013) Birds as mediators of passive restoration during early post-fire recovery. Biol Conserv 158:342–350CrossRefGoogle Scholar
  12. Chale FMM (1996) Litter production in an Avicennia gerrninans (L.) stearn forest in Guyana, South America. Hydrobiologia 330:47–53CrossRefGoogle Scholar
  13. Damascos M, Arribere M, Svriz M, Bran D (2008) Fruit mineral contents of six wild species of the north andean Patagonia, Argentina. Biol Trace Elem Res 125:72–80CrossRefPubMedGoogle Scholar
  14. de Paz M 2014. Heterogeneidad de micrositios, dinámica de nutrientes y facilitación en especies leñosas de los matorrales del NO de la Patagonia. Tesis Doctoral. Directora: Dra. Estela Raffaele (CONICET). Codirectora: Dra. Miriam Gobbi (CRUB). Centro Regional Universitario Bariloche, Universidad Nacional del ComahueGoogle Scholar
  15. de Paz M, Gobbi ME, Raffaele E (2013) Mantillo de las especies leñosas de matorrales del NO de la Patagonia: abundancia, composición, estructura y heterogeneidad. Boletín de la Sociedad Argentina de Botánica 48:525–541Google Scholar
  16. de Paz M, Gobbi ME, Raffaele E, Buamscha MG (2017) Litter decomposition of woody species in shrublands of NW Patagonia: how much do functional groups and microsite conditions influence decomposition? Plant Ecol 218:699–710CrossRefGoogle Scholar
  17. de Paz M, Raffaele E (2013) Cattle change plant reproductive phenology, promoting community changes in a post-fire Nothofagus forest in northern Patagonia, Argentina. J Plant Ecol 6:459–467CrossRefGoogle Scholar
  18. Dean WRJ, Milton SJ, Jeltsch F (1999) Large trees, fertile islands, and birds in arid savanna. J Arid Environ 41:61–78CrossRefGoogle Scholar
  19. Diehl P, Mazzarino MJ, Funes F, Fontenla S, Gobbi ME, Ferrari J (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14:63–70CrossRefGoogle Scholar
  20. Ekblad A, Nordgren A (2002) Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability? Plant Soil 242:115–122CrossRefGoogle Scholar
  21. Fournier LA, de Castro LC (1973) Producción y descomposición del mantillo en un bosque secundario húmedo de premontano. Rev Biol Trop 21:59–67Google Scholar
  22. Gelman A (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  23. Gosz JR, Likens GE, Bormann FH (1972) Nutrient content of litter fall on the Hubbard Brook experimental forest, New Hampshire. Ecology 53:769–784CrossRefGoogle Scholar
  24. Hagvar, S, & Kjondal, BR (1981) Decomposition of birch leaves: dry weight loss, chemical changes, and effects of artificial acid rain. PedobiologiaGoogle Scholar
  25. Hamer U, Marschner B (2005) Priming effects in soils after combined and repeated substrate additions. Geoderma 128:38–51CrossRefGoogle Scholar
  26. Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339CrossRefPubMedGoogle Scholar
  27. Janick J, Paull RE (2008) The encyclopedia of fruit and nuts. CABI, LondonCrossRefGoogle Scholar
  28. Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43PubMedGoogle Scholar
  29. Kuzyakov Y, Hill PW, Jones DL (2007) Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305CrossRefGoogle Scholar
  30. León-Rico R (2003) PARTE III. Los procesos en el suelo: la descomposición. Efecto de la descomposición, frugivoría, remoción de frutos y semillas de especies arbóreas en los patrones de descomposición. En Naranjo-García, E (2003) Ecología del suelo en la selva tropical húmeda de México. UNAM. Google Scholar
  31. Mazzarino MJ, Bertiller MB, Schlichter TM, Gobbi ME (1998) Nutrient cycling in Patagonian ecosystems. Ecologia Austral 8:167–181Google Scholar
  32. Van Der Molen KIM (2008) Química y actividad biológica de Berberis rotundifolia. Facultad de Ciencias Escuela de Química y Farmacia. Universidad Austral de Chile, Valdivia, p 89Google Scholar
  33. Muoghalu JI, Akanni SO, Eretan OO (1993) Litter fall and nutrient dynamics in a Nigerian rain forest seven years after a ground fire. J Veg Sci 4:323–328CrossRefGoogle Scholar
  34. Neuvonen S, Suomela J (1990) The effect of simulated acid rain on pine needle and birch leaf litter decomposition. J Appl Ecol 27(3):857–872CrossRefGoogle Scholar
  35. Ohm H, Hamer U, Marschner B (2007) Priming effects in soil size fractions of a podzolBs horizon after addition of fructose and alanine. J Plant Nutr Soil Sci 17:551–559CrossRefGoogle Scholar
  36. Palacios-Bianchi P (2002) Producción y descomposición de hojarasca en un bosque maulino fragmentado. Biología Ambiental (en línea)
  37. Paritsis J, Raffaele E, Veblen TT (2006) Vegetation disturbance by fire affects plant reproductive phenology in a shrubland community in northwestern Patagonia, Argentina. N Z J Ecol 30:387–395Google Scholar
  38. Patricia L, Morellato C (1992) Nutrient cycling in two south-east Brazilian forests. I Litterfall and litter standing crop. J Trop Ecol 8:205–215CrossRefGoogle Scholar
  39. Pearse IS, Cobb RC, Karban R (2013) The phenology substrate match hypothesis explains decomposition rates of evergreen and deciduous oak leaves. J Ecol 102:28–35CrossRefGoogle Scholar
  40. Pérez Harguindeguy N, Blundo C, Gurvich D, Díaz S, Cuevas E (2008) More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil 303:151–159CrossRefGoogle Scholar
  41. Pinheiro J, Bates D, DebRoy S, Sarkar D, R-Development-Core-Team (2012) nlme: Linear and nonlinear mixed effects models. R package version 3.1-96. R Foundation for Statistical Computing, Vienna.Google Scholar
  42. Queires LCS, Fauvel-Lafève F, Terry S, De la Taille A, Kouyoumdjian JC, Chopin DK, Crepin M (2006) Polyphenols purified from the Brazilian aroeira plant (Schinus terebinthifolius, Raddi) induce apoptotic and autophagic cell death of DU145 cells. Anticancer Res 26(1A):379–387PubMedGoogle Scholar
  43. Rathore M (2009) Nutrient content of important fruit trees from arid zone of Rajasthan. J Hortic For 1:103–108Google Scholar
  44. Rice EL (2012) Allelopathy. Academic press, UKGoogle Scholar
  45. Romero Rodriguez MA, Vazquez Oderiz ML, Lopez Hernandez J, Lozano JS (1992) Determination of vitamin C and organic acids in various fruits by HPLC. J Chromatogr Sci 30(11):433–437CrossRefPubMedGoogle Scholar
  46. Rosales Laguna, DD and Arias Arroyo G (2015) Vitamina C y parámetros fisicoquímicos durante la maduración de Berberis lobbiana "Untusha" Rev. Soc. Quím. Perú[online]., vol. 81, n. 1 [citado 2016-04-11], pp. 63–75.>.
  47. Sandhu J, Sinha M, Ambasht RS (1990) Nitrogen release from decomposing litter of Leucaena leucocephala in the dry tropics. Soil Biol Biochem 22:859–863CrossRefGoogle Scholar
  48. Santos PF, Elkins NZ, Steinberger Y, Whitford WG (1984) A comparison of surface and buried Larrea tridentata leaf litter decomposition in North American hot deserts. Ecology:278–284Google Scholar
  49. Santa Regina, I. & Gallardo, J.F (1985) Producción de hojarasca en tres bosques de la Sierra de Béjar (Salamanca). Mediterránea Ser Biol 8: 89-101Google Scholar
  50. Steubing L, Godoy R, Alberdi M (2001) Métodos de ecología vegetal. Editorial Universitaria S.A, Santiago de ChileGoogle Scholar
  51. Veblen TT, Kitzberger T, Lara A (1992) Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. J Veg Sci 3:507–520CrossRefGoogle Scholar
  52. Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595CrossRefGoogle Scholar
  53. Wardle DA, Bardgett RD (2004) Human-induced changes in large herbivorous mammal density: the consequences for decomposers. Front Ecol Environ 2:145–153CrossRefGoogle Scholar
  54. Zar JH (1996) Biostatistical analysis. Prentice-Hall, Inc., New Jersey, USA, p 663Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio EcotonoINIBIOMA (Universidad Nacional del Comahue-CONICET)BarilocheArgentina
  2. 2.Departamento de Biología, CRUBUniversidad Nacional del Comahue e INIBIOMA (Universidad Nacional del Comahue-CONICET)BarilocheArgentina

Personalised recommendations