Plant and Soil

, Volume 425, Issue 1–2, pp 201–215 | Cite as

Co-inoculation of Bradyrhizobium stimulates the symbiosis efficiency of Rhizobium with common bean

  • Ederson da Conceição JesusEmail author
  • Rafael de Almeida Leite
  • Rennan do Amaral Bastos
  • Osnar Obede da Silva Aragão
  • Adelson Paulo Araújo
Regular Article


Background and aims

Common bean (Phaseolus vulgaris L.) nodulates with a wide range of rhizobia. Amongst these is Bradyrhizobium, which is inefficient but able to induce profuse nodulation on this crop. Based on this observation, we tested whether co-inoculating bradyrhizobia with a more standard common bean symbiont, Rhizobium tropici, could stimulate growth and nodulation of common bean, thus contributing to a more effective symbiosis.


Rhizobium tropici was co-inoculated with two Bradyrhizobium strains applied at three different doses (104, 106, and 108 CFU seed−1) under sterile conditions, and at a single dose (108 CFU seed−1) in non-sterile soil. Plant biomass, nodulation, and N accumulation in plant tissues were evaluated.


Co-inoculated plants produced more nodules, and accumulated more shoot dry biomass and nitrogen than plants inoculated with R. tropici alone under gnotobiotic conditions. Significant responses were observed at the highest inoculum dose and a significant correlation between dose and shoot dry weight was observed. Co-inoculation increased biomass and N accumulation in non-sterile soil, although with a smaller magnitude.


Altogether, our findings suggest that the co-inoculation with bradyrhizobia contributed to an improved symbiotic interaction between R. tropici and common beans.


Phaseolus vulgaris Nodulation Plant growth-promoting rhizobacteria 



Colony-forming unit


Plant growth-promoting rhizobacteria






Capsular polysaccharides



We would like to thank Dr. José Ivo Baldani and Dr. Robert Michael Boddey for reading the manuscript and giving suggestions to improve it. We also thank Dr. Andréia Loviane Silva for helping us with the acetylene reduction analysis; Wilson Cabral da Fonseca for helping us with microscopy sections; and Ernani Meirelles and his staff for giving support with the greenhouse experiments. We acknowledge the financial research support from Embrapa; the Coordination for the Improvement of Higher Education Personnel (Capes), which provided a Masters scholarship to Rafael de Almeida Leite; and the National Council for Scientific and Technological Development (CNPq), which provided a scholarship to Osnar Obede da Silva Aragão, and a research fellowship to Ederson da Conceição Jesus.

Supplementary material

11104_2017_3541_MOESM1_ESM.docx (148 kb)
ESM 1 (DOCX 148 kb)
11104_2017_3541_MOESM2_ESM.docx (469 kb)
ESM 2 (DOCX 468 kb)


  1. Ahmadzadeh M, Tehrani AS (2009) Evaluation of fluorescent pseudomonads for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and biocontrol potential. Biol Control 48:101–107CrossRefGoogle Scholar
  2. Andrade D de S, Hamakawa PJ (1994) Estimativa do número de células viáveis de rizóbios no solo e em inoculantes por infecção em plantas. In: Hungria M, Araújo RS (eds) Manual de Métodos Empregados em Estudos de Microbiologia Agrícola. EMBRAPA-SPI, Brasília, pp 62–94Google Scholar
  3. Andrade DS, Hungria M (2002) Maximizing the contribution of biological nitrogen fixation in tropical legume crops. In: Finan TM, O’Brian MR, Layzell DB, Vessey JK, Newton W (eds) Nitrogen fixation: global perspectives. CABI Publishing, Wallingford, pp 341–345Google Scholar
  4. Baraúna AC, Rouws LF, Simoes-Araujo JL, dos Reis Junior FB, Iannetta PPM, Maluk M, Goi SR, Reis VM, James EK, Zilli JE (2016) Rhizobium altiplani sp. nov. isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in Central Brazil. Int J Syst Evol Microbiol 66:4118–4124CrossRefPubMedGoogle Scholar
  5. Boddey LH, Hungria M (1997) Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biol Fertil Soils 25:407–415CrossRefGoogle Scholar
  6. Brinkman EP, van der Putten WH, Bakker E-J, Verhoeven KJF (2010) Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol 98:1063–1073CrossRefGoogle Scholar
  7. Burdman S, Volpin H, Kigen J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62(8):3030–3033PubMedPubMedCentralGoogle Scholar
  8. Camacho M, Santamaría C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Co-inoculation with Bacillus sp. cECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47:1058–1062CrossRefPubMedGoogle Scholar
  9. Canty A, Ripley B (2017) Boot: bootstrap R (S-Plus) functions. R package version 1.3–20Google Scholar
  10. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed gernimatino and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.) Eur J Soil Biol 45:28–35CrossRefGoogle Scholar
  11. Cumming G (2012) Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. Routledge, New YorkGoogle Scholar
  12. D’Haeze W, Holsters M (2004) Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol 12(12):555–561CrossRefPubMedGoogle Scholar
  13. Dall’Agnol RF, Plotegher F, Souza RC, Mendes IC, dos Reis Júnior FB, Béna G, Moulin L, Hungria M (2016) Paraburkholderia nodosa is the main N2-fixing species trapped by promiscuous common bean (Phaseolus vulgaris L.) in the Brazilian ‘Cerradão’. FEMS Microbiol Ecol 92(8):fiw108. CrossRefPubMedGoogle Scholar
  14. Dall’Agnol RF, Bournaud C, de Faria SM, Béna G, Moulin L, Hungria M (2017) Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiol Ecol 93(4):fix027. Google Scholar
  15. Davison AC, Hinkley DV. (1997) Bootstrap Methods and Their Applications. Cambridge University Press, CambridgeGoogle Scholar
  16. da Silva K, Florentino LA, da Silva KB, de Brandt E, Vandamme P, de Souza Moreira FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35(3):175–182Google Scholar
  17. De Mendiburu F (2009) Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU)Google Scholar
  18. Delamuta JR, Ribeiro RA, Ormeño-Orillo E, Melo IS, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63(Pt 9):3342–3351. CrossRefPubMedGoogle Scholar
  19. Elliott GN, Chen W-M, Bontemps C, Chou J-H, Young JPW, Sprent JI, James EK (2007) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100:1403–1411CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ellis PD (2010) The essential guide to effect sizes: statistical power, meta-analysis, and the interpretation of research results. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Fox J, Weisberg S (2011) An {R} companion to applied regression, Second Edition. Sage, Thousand Oaks. URL:
  22. Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380CrossRefPubMedGoogle Scholar
  23. Freire LR, Balieiro FC, Zonta E, dos Anjos, LC, Pereira MG, Lima E, Guerra JGM, Ferreira MBC, Leal MAA, De Campos DVB, Polidoro JC (2013) Manual de calagem e adubação do Estado do Rio de Janeiro. Brasília: Embrapa; Seropédica, RJ: Editora Universidade Rural 430 pGoogle Scholar
  24. Gano-Cohen KA, Stokes PJ, Blanton MA, Wendlandt CE, Hollowell AC, Regus JU, Kim D, Patel S, Pahua VJ, Sachs JL (2016) Nonodulating Bradyrhizobium spp. modulate the benefits of legume-Rhizobium mutalism. Appl Environ Microbiol 17:5259–5268CrossRefGoogle Scholar
  25. Ghosh PK, Maiti TK (2016) Structure of extracellular polysaccharides (EPS) produced by rhizobia and their functions in legume-bacteria symbiosis: a review. Achiev Live Sci 10:136–143Google Scholar
  26. Graham PH, Parker CA (1964) Diagnostic features in the characterization of the root-nodule bacteria of legumes. Plant Soil 20:383–396CrossRefGoogle Scholar
  27. Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn FJ (ed) Biological Nitrogen Fixation. John Wiley & Sons, Inc, Hoboken.
  28. Hungria M, Joseph CM, Phillips DA (1991) Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.) Plant Physiol 97:759–764CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Mañero FJ, Megías M (2000) Isolation and characterization of new efficient and competitive bean (Phseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528CrossRefGoogle Scholar
  30. Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39:88–93. CrossRefGoogle Scholar
  31. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801CrossRefGoogle Scholar
  32. Ishizawa S (1954) Studies on the root-nodule bacteria of leguminous plants. II. The relationship between nodule bacteria and leguminous plants, part 1. From the view of nodule production. 2 cross-inoculation test. J Sci Soil Manure 24:297–302Google Scholar
  33. Kirby KN, Gerlanc D (2013) BootES: an R package for bootstrap confidence intervals on effect sizes. Behav Res Methods 45:905–927. CrossRefPubMedGoogle Scholar
  34. Lakens D (2013) Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 4:863. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci U S A 82:6231–6235CrossRefPubMedPubMedCentralGoogle Scholar
  36. López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J, Ormeño-Orillo E, Martínez-Romero E (2012) Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62:2264–2271Google Scholar
  37. Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10. CrossRefPubMedGoogle Scholar
  38. Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3:21. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Martínez E, Pardo MA, Palacios R, Cevallos MA (1985) Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J Gen Microbiol 131:1779–1786Google Scholar
  40. Martínez-Romero (2003) Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252:11–23CrossRefGoogle Scholar
  41. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41(3):417–426CrossRefPubMedGoogle Scholar
  42. Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17(10):458–466CrossRefPubMedGoogle Scholar
  43. Michiels J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. Microb Ecol 26:193–205CrossRefGoogle Scholar
  44. Minamisawa K (1990) Division of rhizobitoxine-producing and hydrogen-uptake positive strains of Bradyrhizobium japonicum by nifDKE sequence divergence. Plant Cell Physiol 31:81–89Google Scholar
  45. Mostasso L, Mostasso FL, Dias BG, Vargas MAT, Hungria M (2002) Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crop Res 73:121–132CrossRefGoogle Scholar
  46. Mrabet M, Mnasri B, Romdhane SB, Laguerre G, Aouani ME, Mhamdi R (2006) Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiol Ecol 56:304–309CrossRefPubMedGoogle Scholar
  47. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev Camb Philos Soc 82(4):591–605CrossRefPubMedGoogle Scholar
  48. Norris DO, T’Mannetje L (1964) The symbiotic specialization of African Trifolium spp. in relation to their taxonomy and their agronomic use. East Afr Agric For J 29:214–235CrossRefGoogle Scholar
  49. O’Hara GW, Hungria M, Woomer P, Howieson JG (2016) Counting rhizobia. In: Howieson JG, Dilworth MJ (ed) Working with rhizobia. Australian Centre for International Agricultural Research, Canberra, pp 109–124. Available at Accessed 24 Mar 2017
  50. Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59(1):519–546Google Scholar
  51. Ormeño-Orillo E, Rogel MA, Lloret L, López A, Martínez J, Vinuesa P, Martínez-Romero E (2009) Rhizobial diversity in different land use systems in the rain forest of Los Tuxtlas, Mexico. In: Barois I, Huising EJ, Okoth P, Trejo D, de Los Santos M (ed) Below-ground biodiversity in Sierra Santa Marta, Los Tuxtlas, Veracruz, México. Instituto de Ecología, A.C. Xalapa, Ver., México, p 65–84, 262 pGoogle Scholar
  52. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64(1):180–201CrossRefPubMedPubMedCentralGoogle Scholar
  53. Quelas JI, Mongiardini EJ, Casabuono A, López-García SL, Althabeboiti MJ, Covelli JM, Pérez-Giménez J, Couto A, Lodeiro AR (2010) Lack of galactose or galacturonic acid in Bradyrhizobium japonicum USDA 110 exopolysaccharide leads to different symbiotic responses in soybean. MPMI 23(12):1592–1604CrossRefPubMedGoogle Scholar
  54. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL
  55. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orillo E, Barcellos FG, Martínez FG, Martínez J, Thompson FL, Martínez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type a strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1179–1184CrossRefPubMedGoogle Scholar
  56. Rinella MJ, James JJ (2010) Invasive plant researchers should calculate effect sizes, not p-values. Invasive Plant Sci Manag 3:106–112CrossRefGoogle Scholar
  57. RStudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston. URL.
  58. Somasegaran P, Hoben HJ (1985) Methods in legume-rhizobium technology. NifTal Hawaii, USAGoogle Scholar
  59. Stanley JS, Brown GG, Verma DPS (1985) Slow-growing Rhizobium japonicum comprises two highly divergent symbiotic types. J Bacteriol 163:148–154PubMedPubMedCentralGoogle Scholar
  60. Talbi C, Delgado MJ, Girard L, Ramirez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum strains capable of nodulating phaseolus vulgaris are present in moroccan soils. Appl Environ Microbiol 76(13):4587–4591Google Scholar
  61. Tanaka K, Cho S-H, Lee H, Pham AQ, Batek JM, Cui S, Qiu J, Hkan SM, Joshi T, Zhang ZJ, Xu D, Stacey G (2015) Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings. J Exp Bot 66:5727–5738. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vacha-Haase T, Thompson B (2004) How to estimate and interpret various effect sizes. J Couns Psychol 51(4):473–481CrossRefGoogle Scholar
  63. Vlassak KM, Vanderleyden J, Graham PH (1997) Factors influencing nodule occupancy by inoculant rhizobia. Crit Rev Plant Sci 16:163–229Google Scholar
  64. Weaver RW, Danso SKA (1994) Dinitrogen fixation. SSSA book series, methods of soil analysis: part 2—microbiological and biochemical properties, 5.2, pp 1019–1045Google Scholar
  65. Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S (2015) A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11(6):e1005280CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zuberer DA (1994) Recovery and enumeration of viable bacteria. In: Weaver RW, Angle JS, Bottomley PS (ed) Methods of soil analysis – part 2 – microbiological and biochemical properties, p 119–144Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ederson da Conceição Jesus
    • 1
    Email author
  • Rafael de Almeida Leite
    • 2
  • Rennan do Amaral Bastos
    • 2
    • 3
  • Osnar Obede da Silva Aragão
    • 2
  • Adelson Paulo Araújo
    • 2
  1. 1.Embrapa AgrobiologiaSeropédicaBrazil
  2. 2.Departamento de SolosUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  3. 3.IFAC - Campus Cruzeiro do SulBairro Nova OlindaBrazil

Personalised recommendations