Advertisement

Plant and Soil

, Volume 423, Issue 1–2, pp 141–155 | Cite as

Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium

  • Felipe Martini SantosEmail author
  • Fabiano de Carvalho Balieiro
  • Marcelo Antoniol Fontes
  • Guilherme Montandon ChaerEmail author
Regular Article

Abstract

Background and aims

Soil microbial-derived litter decomposition represents an important step in the global carbon and nutrient cycling and, at the local level, is primarily driven by litter chemistry. Here, we assessed how mixed-species plantations with Eucalyptus urograndis and Acacia mangium could be a key to enhancing litter production, decomposition, and soil microbial activity.

Methods

The relationships between litter decomposition and litter quality and quantity were compared among 6-year-old monocultures of E. urograndis and A. mangium (E100+N and A100, respectively) and a mixed plantation of both species (E50A50). Additionally, we evaluated soil microbial biomass carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR), soil enzymes and the N mineralization potential.

Results

The return to soil of N via litterfall in E50A50 was greater than E100+N, while the return of P in E100+N and E50A50 were higher than A100. The decomposition rate in A100 was slower than in the E50A50 and E100+N. The microbial activity, represented by soil enzyme activities (proteases and N-acetyl-β-glucosaminidases), was consistently higher in E50A50 than in A100.

Conclusion

The E50A50 presented a more balanced supply of N and P associated to a better structural quality of the litter for microbial metabolism, with synergic reflections on decomposition rates and release of nitrogen.

Keywords

Intercropping N2-fixing trees Nutrient cycling N:P stoichiometry Enzyme activity Decomposer starvation 

Abbreviations

FTIR

Fourier-transform infrared spectroscopy

MBC

Soil microbial biomass carbon

MBN

Soil microbial biomass nitrogen

NAG

N-acetyl-β-glucosaminidase

qCO2

Metabolic quotient

SBR

Soil basal respiration

Notes

Acknowledgements

We are grateful to Dr. Francy J. G. Lisboa for helpful comments on this work. We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Process number: 2010/16623-9) and the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for the financial support (E26/110.821/2010). We also thank Suzano Papel and Celulose SA, represented by Dr. José Luiz Gava, for the donation of Eucalyptus urograndis seedlings for this experiment. The first author thanks the Programa de Pós-Graduação em Ciências Ambientais e Florestais (PPGCAF) of the Universidade Federal Rural do Rio de Janeiro (UFRRJ) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarships.

References

  1. Alef K, Nannipieri P (1995) Protease activities. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, New York, pp 313–315Google Scholar
  2. Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944.  https://doi.org/10.1016/j.soilbio.2004.09.014 CrossRefGoogle Scholar
  3. Anderson JPE, Domsch KH (1985) Determination of eco-physiological maintenance requirements of soil microorganisms in a dormant state. Biol Fertil Soils 1:81–89Google Scholar
  4. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods. CAB International, WallingfordGoogle Scholar
  5. Anderson JD, Ingram LJ, Stahl PD (2008) Influence of reclamation management practices on microbial biomass carbon and soil organic carbon accumulation in semiarid mined lands of Wyoming. Appl Soil Ecol 40:387–397.  https://doi.org/10.1016/j.apsoil.2008.06.008 CrossRefGoogle Scholar
  6. Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314.  https://doi.org/10.1111/nph.12959 CrossRefGoogle Scholar
  7. Bachega LR, Bouillet J-P, de Cássia Piccolo M et al (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the home field advantage hypothesis. For Ecol Manag 359:33–43.  https://doi.org/10.1016/j.foreco.2015.09.026
  8. Balieiro FC, Pereira MG, Alves BJR et al (2008) Soil carbon and nitrogen in pasture soil reforested with eucalyptus and guachapele. Rev Bras Ciênc Solo 32:1253–1260Google Scholar
  9. Balieiro FC, Zilli JE, Prin Y, Faria SM (2010) Nodulação e fixação biológica de nitrogênio em Acacia mangium. In: Tonini H, Halfeld-Vieira BA (eds) Acacia mangium: características e seu cultivo em Roraima. Embrapa Informação Tecnológica, Brasília, pp 31–61Google Scholar
  10. Balieiro FC, Franco AA, Pereira MG et al (2004) Contribution of litter and nitrogen to soil under Pseudosamanea guachapele and Eucalyptus grandis plantations. Pesq Agrop Brasileira 39:597–601Google Scholar
  11. Bartlett RJ, Ross SD (1988) Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Sci Soc Am J 52:1191–1192CrossRefGoogle Scholar
  12. Bauhus J, Winden AP, Nicotra AB (2004) Aboveground interactions and productivity in mixed species plantations of Acacia mearnsii and Eucalyptus globulus. Can J For Res 34:686–694Google Scholar
  13. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22CrossRefGoogle Scholar
  14. Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a scots pine forest. VII. Can J Bot 69:1449–1456.  https://doi.org/10.1139/b91-187 CrossRefGoogle Scholar
  15. Bini D, Santos CA, Bouillet J-P et al (2013) Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63:57–66.  https://doi.org/10.1016/j.apsoil.2012.09.012
  16. Bonanomi G, Capodilupo M, Incerti G, Mazzoleni S (2014) Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes. Plant Soil 381:307–321.  https://doi.org/10.1007/s11104-014-2119-4 CrossRefGoogle Scholar
  17. Bouillet J-P, Laclau J-P, Gonçalves JL de M et al (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil 2. Nitrogen accumulation in the stands and biological N2 fixation. For Ecol Manag 255:3918–3930.  https://doi.org/10.1016/j.foreco.2007.10.050
  18. Bouillet J-P, Laclau J-P, Gonçalves JL de M et al (2013) Eucalyptus and Acaci a tree growth over entire rotation in single-and mixed-species plantations across five sites in Brazil and Congo. For Ecol Manag 301:89–101.  https://doi.org/10.1016/j.foreco.2012.09.019
  19. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842.  https://doi.org/10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  20. Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365.  https://doi.org/10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
  21. Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606.  https://doi.org/10.1016/0038-0717(88)90141-1 CrossRefGoogle Scholar
  22. Elser JJ, Sterner RW, Gorokhova E et al (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550.  https://doi.org/10.1111/j.1461-0248.2000.00185.x CrossRefGoogle Scholar
  23. Embrapa (2011) Manual de métodos de análise de solo. Embrapa Solos, Rio de JaneiroGoogle Scholar
  24. Epron D, Nouvellon Y, Mareschal L et al (2013) Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: two case-studies in contrasting tropical environments. For Ecol Manag 301:102–111.  https://doi.org/10.1016/j.foreco.2012.10.034
  25. Faria SM, Diedhiou AG, Lima HC et al (2010) Evaluating the nodulation status of leguminous species from the Amazonian forest of Brazil. J Exp Bot 61:3119–3127Google Scholar
  26. Ferreira EB, Cavalcanti P P, Nogueira DA (2013) ExpDes: Experimental Designs packageGoogle Scholar
  27. Forrester DI, Bauhus J, Cowie AL (2005a) On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 209:147–155.  https://doi.org/10.1016/j.foreco.2005.01.012
  28. Forrester DI, Bauhus J, Cowie AL (2005b) Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Can J For Res 35:2942–2950.  https://doi.org/10.1139/x05-214
  29. Forrester DI, Bauhus J, Cowie AL (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230.  https://doi.org/10.1016/j.foreco.2006.05.012
  30. Forrester DI, Vanclay JK, Forrester RI (2011) The balance between facilitation and competition in mixtures of Eucalyptus and Acacia changes as stands develop. Oecologia 166:265–272.  https://doi.org/10.1007/s00442-011-1937-9
  31. Forrester DI, Pares A, Hara CO et al (2013) Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing Acacia. Ecosystems 16:123–132Google Scholar
  32. Franco AA, Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29:897–903CrossRefGoogle Scholar
  33. Galiana A, Balle P, kang AN, Domenach AM (2002) Nitrogen fixation estimated by the 15N natural abundance method in Acacia mangium Willd. inoculated with Bradyrhizobium sp. and grown in silvicultural conditions. Soil Biol Biochem 34:251–262Google Scholar
  34. Güsewell S, Gessner MO (2009) N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219.  https://doi.org/10.1111/j.1365-2435.2008.01478.x CrossRefGoogle Scholar
  35. Hättenschwiler S, Jørgensen HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–763.  https://doi.org/10.1111/j.1365-2745.2010.01671.x CrossRefGoogle Scholar
  36. Hättenschwiler S, Coq S, Barantal S, Handa IT (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965.  https://doi.org/10.1111/j.1469-8137.2010.03483.x CrossRefPubMedGoogle Scholar
  37. Inagaki M, Kamo K, Miyamoto K et al (2011) Nitrogen and phosphorus retranslocation and N:P ratios of litterfall in three tropical plantations: luxurious N and efficient P use by Acacia mangium. Plant Soil 341:295–307Google Scholar
  38. Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81:3267–3273.  https://doi.org/10.1890/0012-9658(2000)081[3267:NACDIA]2.0.CO;2
  39. Keeney DR, Bremner JM (1966) Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability1. Agron J 58:498.  https://doi.org/10.2134/agronj1966.00021962005800050013x CrossRefGoogle Scholar
  40. Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manag 233:195–204.  https://doi.org/10.1016/j.foreco.2006.05.011 CrossRefGoogle Scholar
  41. Kempers AJ, Zweers A (1986) Ammonium determination in soil extracts by the salicylate method. Commun Soil Sci Plant Anal 17:715–723.  https://doi.org/10.1080/00103628609367745 CrossRefGoogle Scholar
  42. Khanna PK (1997) Comparison of growth and nutrition of young monocultures and mixed stands of Eucalyptus globulus and Acacia mearnsii. For Ecol Manag 94:105–113.  https://doi.org/10.1016/S0378-1127(96)03971-0
  43. Koutika LS, Epron D, Bouillet JP, Mareschal L (2014) Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant Soil 379:1–12.  https://doi.org/10.1007/s11104-014-2047-3 CrossRefGoogle Scholar
  44. Koutika L-S, Mareschal L, Epron D (2016) Soil P availability under eucalypt and acacia on Ferralic Arenosols, republic of the Congo. Geoderma Reg 7:153–158.  https://doi.org/10.1016/j.geodrs.2016.03.001 CrossRefGoogle Scholar
  45. Krisnawati H, Kallio M, Kanninen M (2011) Acacia mangium Willd.: ecology, silviculture, and productivity. CIFOR, Bogor, IndonesiaGoogle Scholar
  46. Laclau J-P, Bouillet J-P, Gonçalves JL de M et al (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil: 1. Growth dynamics and aboveground net primary production. For Ecol Manag 255:3905–3917.  https://doi.org/10.1016/j.foreco.2007.10.049
  47. Laclau J-P, Ranger J, Gonçalves JL de M et al (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785.  https://doi.org/10.1016/j.foreco.2009.06.010
  48. le Maire G, Nouvellon Y, Christina M, et al (2013) Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 288:31–42.  https://doi.org/10.1016/j.foreco.2012.03.005
  49. Mercado AN, van Noordwijk M, Cadisch G (2011) Positive nitrogen balance of Acacia mangium wood lots as fallows in the Philippines based on15N natural abundance data of N2 fixation. Agrofor Syst 81:221–233.  https://doi.org/10.1007/s10457-010-9309-8
  50. Novotny EH, Rodrigues AF, Balieiro FC, et al (2013) Avaliação de alterações estruturais durante a decomposição de serapilheira de eucalipto e Acacia mangium por meio de espectroscopia vibracional (FTIR) aliada à análise de componentes principais (PCA). In: Encontro Brasileiro de Substâncias Húmicas. Sociedade Internacional de Substâncias Húmicas, Santo Antônio de GoiásGoogle Scholar
  51. Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activityby N and P availability. Biogeochemistry 49:175–191.  https://doi.org/10.1023/A:1006316117817 CrossRefGoogle Scholar
  52. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Source Ecol 44:322–331Google Scholar
  53. Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974.  https://doi.org/10.1007/s11284-007-0390-z CrossRefGoogle Scholar
  54. Osono T, Takeda H (2006) Fungal decomposition of Abies needle and Betula leaf litter. Mycologia 98:172–179Google Scholar
  55. Parham JA, Deng SP (2000) Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol Biochem 32:1183–1190.  https://doi.org/10.1016/S0038-0717(00)00034-1 CrossRefGoogle Scholar
  56. R Development Core Team (2017) R: a language and environment for statistical computingGoogle Scholar
  57. Rachid CTCC (2013) Biodisponibilidade de nutrientes e estrutura microbiana do sistema solo-serapilheira em floresta plantada mista de Eucalyptus urograndis e Acacia mangium. Federal University of Rio de JaneiroGoogle Scholar
  58. Rachid CTCC, Balieiro FC, Fonseca ES et al (2015) Intercropped silviculture systems, a key to achieving soil fungal community management in Eucalyptus plantations. PLoS One 10:e0118515.  https://doi.org/10.1371/journal.pone.0118515
  59. Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen - fixing trees compared with Eucalyptus species. Ecosystems 5:217–231.  https://doi.org/10.1007/s10021-001-0067-3
  60. Santos FM, Balieiro F, de C, Ataíde DH dos S et al (2016) Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil. For Ecol Manag.  https://doi.org/10.1016/j.foreco.2015.12.028
  61. Santos FM, Chaer GM, Diniz AR, Balieiro F, de C (2017) Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. For Ecol Manag 384:110–121.  https://doi.org/10.1016/j.foreco.2016.10.041
  62. Silva EE, Azevedo PHS, De-Polli H (2007a) Determinação do nitrogênio da biomassa microbiana (BMS-N). In: Comun. Técnico 96 Embrapa Agrobiol. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/597310/1/cot096.pdf
  63. Silva EE, Azevedo PHS, De-Polli H (2007b) Determinação da respiração basal (RBS) e quociente metabólico do solo (qCO2). In: Comun. técnico 99 Embrapa Agrobiol. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/627577/1/cot099.pdf
  64. Sinsabaugh RL, Antibus RK, Linkins AE et al (1993) Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586–1593.  https://doi.org/10.2307/1940086 CrossRefGoogle Scholar
  65. Smith VH (2002) Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek 81:99–106.  https://doi.org/10.1023/A:1020533727307 CrossRefPubMedGoogle Scholar
  66. Tabatabai MA (1994) Soil enzymes. In: Weaver RW (ed) Methods of soil analysis. Soil Science Society of America, Madison, pp 775–833Google Scholar
  67. Tang G, Li K, Zhang C et al (2013) Accelerated nutrient cycling via leaf litter, and not root interaction, increases growth of Eucalyptus in mixed-species plantations with Leucaena. For Ecol Manag 310:45–53.  https://doi.org/10.1016/j.foreco.2013.08.021
  68. Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, IthacaGoogle Scholar
  69. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707.  https://doi.org/10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  70. Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, New YorkCrossRefGoogle Scholar
  71. Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892.  https://doi.org/10.1111/j.0030-1299.2007.15559.x CrossRefGoogle Scholar
  72. Voigtlaender M, Laclau J-P, Gonçalves JL de M et al (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352:99–111.  https://doi.org/10.1007/s11104-011-0982-9
  73. Xiang W, Bauhus J (2007) Does the addition of litter from N-fixing Acacia mearnsii accelerate leaf decomposition of Eucalyptus globulus? Aust J Bot 55:576–583.  https://doi.org/10.1071/BT06083

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Felipe Martini Santos
    • 1
    Email author
  • Fabiano de Carvalho Balieiro
    • 2
  • Marcelo Antoniol Fontes
    • 3
  • Guilherme Montandon Chaer
    • 3
    Email author
  1. 1.Departamento de SilviculturaUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  2. 2.Embrapa SolosRio de JaneiroBrazil
  3. 3.Embrapa AgrobiologiaSeropédicaBrazil

Personalised recommendations