Plant and Soil

, Volume 420, Issue 1–2, pp 289–302 | Cite as

Elevated CO2 mediates the short-term drought recovery of ecosystem function in low-diversity grassland systems

  • Audrey Niboyet
  • Gérard Bardoux
  • Sebastien Barot
  • Juliette M. G. BloorEmail author
Regular Article


Background and aims

Ecosystems are expected to experience simultaneous environmental changes. This study examines the interactive effects of atmospheric CO2 and plant community composition on grassland ecosystem functioning after a severe drought.


Monocultures of the grass Dactylis glomerata were compared to a four-species grassland community under ambient and elevated CO2, with or without drought. Greenhouse gas fluxes, C and N pools in plants and soil were measured over a 55-day, post-rewetting period for all mesocosms.


Experimental drought reduced aboveground biomass production, but increased soil inorganic N and dissolved organic C (DOC) across CO2 and community composition treatments. Following rewetting, droughted mesocosms had lower ecosystem respiration and higher N2O emissions. After 55 days, negative drought effects persisted on above- and belowground C stocks and root N stocks. Elevated CO2 reduced the magnitude of drought effects on ecosystem respiration, N2O fluxes and plant C:N ratios but increased drought-induced changes to soil DOC. The four-species mixture buffered ecosystem respiration from drought effects, but showed higher drought-induced increases in soil inorganic N shortly after rewetting.


Elevated CO2 mitigates the effects of extreme drought on multiple grassland functions. In contrast, grassland composition appears to have mainly additive effects with drought and elevated CO2 in our simple sown systems.


Climate change CO2 fluxes Extreme events Grassland production Nitrous oxide emissions Plant-soil interactions 



This study was supported by the ‘Agence Nationale de la Recherche’ (PULSE project ANR-2010-CEPL-010-04). The authors thank the CEREEP-Ecotron Ile De France (UMS 3194, CNRS-ENS, Foljuif experimental station) for providing soil, and are grateful to D. Sévéré and S. Fontaine for help setting up and monitoring the experiment. We thank L. Conte, M. Coornaert, W. Daniel, M. Guérin, S. Lireux, F. Marmonier, and S-L. Redon for assistance with data collection and harvests. Thanks also to Katja Klumpp for helpful comments on a previous version of the manuscript.

Supplementary material

11104_2017_3377_MOESM1_ESM.docx (821 kb)
ESM 1 (DOCX 820 kb)


  1. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270CrossRefPubMedGoogle Scholar
  2. Albert KR, Ro-Poulsen H, Mikkelsen TN et al (2011) Interactive effects of elevated CO2, warming and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62:4253–4266CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker JT, Allen LH, Boote KJ, Pickering NB (1997) Rice responses to drought under carbon dioxide enrichment. Growth and yield. Glob Chang Biol 3:119–128CrossRefGoogle Scholar
  4. Beier C, Beierkuhnlein C, Wohlgemuth T et al (2012) Precipitation manipulation experiments - challenges and recommendations for the future. Ecol Lett 15:899–911CrossRefPubMedGoogle Scholar
  5. Blankinship JC, Brown JR, Dijikstra P, Hungate BA (2010) Effects of interactive global changes on methane uptake in an annual grassland. J Geophys Res 115:G02008. doi: 10.1029/2009JG001097 CrossRefGoogle Scholar
  6. Bloor JMG, Bardgett RD (2012) Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: Interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol 14:193–204CrossRefGoogle Scholar
  7. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824CrossRefGoogle Scholar
  8. Brown JR, Blankinship JC, Niboyet A et al (2012) Effects of multiple global change treatments on soil N2O fluxes. Biogeochemistry 109:85–100CrossRefGoogle Scholar
  9. Cantarel AAM, Bloor JMG, Soussana JF (2013) Four years of simulated climate change reduces aboveground productivity and alters functional diversity in a grassland ecosystem. J Veg Sci 24:113–126CrossRefGoogle Scholar
  10. De Boeck HJ, Lemmens CMHM, Bossuyt H et al (2006) How do climate warming and plant species richness affect water use in experimental grasslands? Plant Soil 288:249–261CrossRefGoogle Scholar
  11. De Deyn GB, Quirk H, Oakley S et al (2011) Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed grasslands. Biogeosciences 8:1131–1139CrossRefGoogle Scholar
  12. Dijkstra FA, Morgan JA, LeCain DR, Follet RF (2010) Microbially mediated CH4 consumption and N2O emission is affected by elevated CO2, soil water content and composition of semi-arid grassland species. Plant Soil 329:269–281CrossRefGoogle Scholar
  13. Drigo B, Pijl AS, Duyts H et al (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. PNAS 107:10938–10942CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dumont B, Andueza D, Niderkorn V et al (2015) A meta-analysis of climate change effects on forage quality in grasslands: specificities of mountain and Mediterranean areas. Grass Forage Sci 70:239–254CrossRefGoogle Scholar
  15. Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling and impacts. Science 289:2068–2074CrossRefPubMedGoogle Scholar
  16. Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251CrossRefPubMedGoogle Scholar
  17. Finn JA, Kirwan L, Connolly J et al (2013) Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J Appl Ecol 50:365–375CrossRefGoogle Scholar
  18. Frank D, Reichstein M, Bahn M et al (2015) Effects of climate extremes on the teresstrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol 21:2861–2880CrossRefPubMedPubMedCentralGoogle Scholar
  19. Franks PJ, Adams MA, Amthor JS et al (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol 197:1077–1094CrossRefPubMedGoogle Scholar
  20. Hartmann AA, Niklaus PA (2012) Effects of simulated drought and nitrogen fertilizer on plant productivity and nitrous oxide (N2O) emissions of two pastures. Plant Soil 361(1–2):411–426CrossRefGoogle Scholar
  21. Herzberger AJ, Meiners SJ, Towey JB et al (2014) Plant–microbe interactions change along a tallgrass prairie restoration chronosequence. Restor Ecol 23:220–227CrossRefGoogle Scholar
  22. Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  23. Hoover DL, Knapp AK, Smith MD (2014) Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95:2646–2656CrossRefGoogle Scholar
  24. Hoover DL, Knapp AK, Smith MD (2016) The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland. J Geophys Res Biogeosci:121. doi: 10.1002/2015JG003256
  25. Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513CrossRefPubMedGoogle Scholar
  26. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460CrossRefPubMedGoogle Scholar
  27. IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UKGoogle Scholar
  28. Isbell F, Craven D, Connolly J et al (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–577CrossRefPubMedGoogle Scholar
  29. Kayler ZE, De Boeck HJ, Fatichi S et al (2015) Experiments to confront the environmental extremes of climate change. Front Ecol Environ 13:219–225CrossRefGoogle Scholar
  30. Kim DG, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9:2459–2483CrossRefGoogle Scholar
  31. Korner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619Google Scholar
  32. Kreyling J, Wenigmann M, Beierkuhnlein C, Jentsch A (2008) Effects of extreme weather events on plant productivity and tissue die-back are modified by community composition. Ecosystems 11:752–763CrossRefGoogle Scholar
  33. Lashof DA, DeAngelo BJ, Saleska SR, Harte J (1997) Terrestrial ecosystem feedbacks to global climate change. Annu Rev Energy Environ 22:75–118CrossRefGoogle Scholar
  34. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628CrossRefPubMedGoogle Scholar
  35. Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115CrossRefPubMedGoogle Scholar
  36. Mariotte P, Vandenberghe C, Kardol P et al (2013) Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J Ecol 101:763–773CrossRefGoogle Scholar
  37. Miranda-Apodaca J, Perez-Lopez U, Lacuesta M et al (2015) The type of competition modulates the ecophysiological response of grassland species to elevated CO2 and drought. Plant Biol 17:298–310CrossRefPubMedGoogle Scholar
  38. Mirzaei H, Kreyling J, Hussain MZ et al (2008) A single drought event of 100-year recurrence enhances subsequent carbon uptake and changes carbon allocation in experimental grassland communities. J Plant Nutr Soil Sci 171:681–689CrossRefGoogle Scholar
  39. Morgan JA, LeCain DR, Pendall E et al (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205CrossRefPubMedGoogle Scholar
  40. Naudts K, Van den Berge J, Janssens IA, Nijs I, Ceulemans R (2011) Does an extreme drought event alter the response of grassland communities to a changing climate? Environ Exp Bot 70:151–157CrossRefGoogle Scholar
  41. Niboyet A, Barthes L, Hungate BA et al (2010) Responses of soil nitrogen cycling to the interactive effects of elevated CO2 and inorganic N supply. Plant Soil 327:35–47Google Scholar
  42. Niklaus PA, Korner C (2004) Synthesis of a six year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511CrossRefGoogle Scholar
  43. O’Mara FP (2012) The role of grasslands in food security and climate change. Ann Bot 110:1263–1270CrossRefPubMedPubMedCentralGoogle Scholar
  44. Orwin KH, Buckland SM, Johnson D et al (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–1083CrossRefGoogle Scholar
  45. Orwin KH, Dickie IA, Wood JR et al (2016) Soil microbial community structure explains the resistance of respiration to a dry-rewet cycle but not soil functioning under static conditions. Funct Ecol 30:1430–1439CrossRefGoogle Scholar
  46. Peeters A (2009) Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassl Sci 55:113–125CrossRefGoogle Scholar
  47. Persson T, Bergkvist G, Kätterer T (2008) Long-term effects of crop rotations with and without perennial leys on soil carbon stocks and grain yields of winter wheat. Nutr Cycl Agroecosyst 81:193–202CrossRefGoogle Scholar
  48. Polley HW, Isbell FI, Wilsey BJ (2013) Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity. Oikos 122:1275–1282CrossRefGoogle Scholar
  49. Reyer CPO, Leuzinger S, Rammig A et al (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Chang Biol 19:75–89CrossRefPubMedGoogle Scholar
  50. Rivest D, Paquette A, Shipley B et al (2014) Tree communities rapidly alter soil microbial resistance and resilience to drought. Funct Ecol 29:570–578CrossRefGoogle Scholar
  51. Roy J, Picon-Cochard C, Augusti A et al (2016) Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. PNAS 113:6224–6229CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394CrossRefPubMedGoogle Scholar
  53. Schrier-Uijl AP, Kroon PS, Hensen A et al (2010) Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat. Agric For Meteorol 150:825–831CrossRefGoogle Scholar
  54. Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Philos Trans R Soc B 363:717–739CrossRefGoogle Scholar
  55. Smith MD (2011) The ecological role of climate extremes: current understanding and future prospects. J Ecol 99:651–655CrossRefGoogle Scholar
  56. Soussana JF, Lemaire G (2014) Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric Ecosyst Environ 190:9–17CrossRefGoogle Scholar
  57. Suding KN, Lavorel S, Chapin FS III et al (2008) Scaling environmental change through the community level: a trait-based response-and-effect framework for plants. Glob Chang Biol 14:1125–1140CrossRefGoogle Scholar
  58. Van der Molen MK, Dolman AJ, Ciais P et al (2011) Drought and ecosystem carbon cycling. Agric For Meteorol 151:765–773CrossRefGoogle Scholar
  59. van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475:214–216CrossRefPubMedGoogle Scholar
  60. Volaire F, Barkaoui K, Norton M (2014) Designing resilient and sustainable grasslands for a drier future: adaptive strategies, functional traits and biotic interactions. Eur J Agron 52:81–89CrossRefGoogle Scholar
  61. Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633CrossRefPubMedGoogle Scholar
  62. Wardle DA, Bonner KI, Barker GM (2000) Stability of ecosystem properties in response to aboveground functional group richness and composition. Oikos 89:11–23CrossRefGoogle Scholar
  63. White CS, Moore DI, Craig JA (2004) Regional-scale drought increases potential soil fertility in semiarid grasslands. Biol Fertil Soils 40:73–78CrossRefGoogle Scholar
  64. Wu Z, Dijkstra P, Koch GW et al (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Chang Biol 17:927–942CrossRefGoogle Scholar
  65. Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2 - implications for water-limited environments. Plant Cell Environ 25:319–331CrossRefPubMedGoogle Scholar
  66. Zwicke M, Picon-Cochard C, Morvan-Bertrand A et al (2015) What functional strategies drive drought survival and recovery of perennial species from upland grassland? Ann Bot 116:1001–1015CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Audrey Niboyet
    • 1
  • Gérard Bardoux
    • 2
  • Sebastien Barot
    • 3
  • Juliette M. G. Bloor
    • 4
    Email author
  1. 1.Institute of Ecology and Environmental Sciences – Paris (IEES - Paris)UMR 7618 Université Pierre et Marie Curie / CNRS / AgroParisTech, AgroParisTechThiverval GrignonFrance
  2. 2.Institut de Physique du Globe de ParisParisFrance
  3. 3.IRDInstitute of Ecology and Environmental Sciences – Paris (IEES - Paris), UMR 7618 (CNRS, UPMC, INRA, IRD)ParisFrance
  4. 4.INRA, VetAgro-Sup, UREPClermont-FerrandFrance

Personalised recommendations