Plant and Soil

, Volume 419, Issue 1–2, pp 557–573 | Cite as

Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656T

  • Katja Witzel
  • Nadine Strehmel
  • Susanne Baldermann
  • Susanne Neugart
  • Yvonne Becker
  • Matthias Becker
  • Beatrice Berger
  • Dierk Scheel
  • Rita Grosch
  • Monika Schreiner
  • Silke Ruppel



Plant growth-promoting bacteria (PGPB) affect host physiological processes in various ways. This study aims at elucidating the dependence of bacterial-induced growth promotion on the plant genotype and characterizing plant metabolic adaptations to PGPB.


Eighteen Arabidopsis thaliana accessions were inoculated with the PGPB strain Kosakonia radicincitans DSM 16656T. Colonisation pattern was assessed by enhanced green fluorescent protein (eGFP)-tagged K. radicincitans in three A. thaliana accessions differing in their growth response. Metabolic impact of bacterial colonisation was determined for the best responding accession by profiling distinct classes of plant secondary metabolites and root exudates.


Inoculation of 18 A. thaliana accessions resulted in a wide range of growth responses, from repression to enhancement. Testing the bacterial colonisation of three accessions did not reveal a differential pattern. Profiling of plant secondary metabolites showed a differential accumulation of glucosinolates, phenylpropanoids and carotenoids in roots. Analysis of root exudates demonstrated that primary and secondary metabolites were predominantly differentially depleted by bacterial inoculation.


The plant genotype controls the bacterial growth promoting traits. Levels of lutein and β-carotene were elevated in inoculated roots. Supplementing a bacterial suspension with β-carotene increased bacterial growth, while this was not the case when lutein was applied, indicating that β-carotene could be a positive regulator of plant growth promotion.


Arabidopsis Carotenoids Glucosinolates Plant growth promoting bacteria Phenylpropanoids Root exudates 



Arbuscular mycorrhizal fungi


Confocal laser scanning microscopy


Enhanced green fluorescent proteinPGBP plant growth promoting bacteria


Gas chromatography-electron ionization-quadrupole mass spectrometry


High-performance liquid chromatography-diode array detection-electrospray ionization-multiple stage mass spectrometry


Indole-3-acetic acid


Ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-mass spectrometry



The technical assistance of Sabine Breitkopf, Andrea Jankowsky, Sylvia Krüger, Annett Platalla, Birgit Wernitz and Sieglinde Widiger is gratefully acknowledged. We thank Christoph Böttcher (Leibniz Institute of Plant Biochemistry, Germany) for the gift of leucylproline standard, Ellen Lagendjik (Leiden University, Netherlands) for provision of eGFP plasmid pMP4655, and Stefanie Döll (Leibniz Institute of Plant Biochemistry, Germany), Barbara Halkier and Deyang Xu (University of Copenhagen, Denmark) for transgenic Arabidopsis lines. This work was supported by the German Leibniz association (PAKT project ‘Chemical Communication in the Rhizosphere’, SAW-2011-IPB-3).

Supplementary material

11104_2017_3371_MOESM1_ESM.docx (2 mb)
ESM 1 (DOCX 2052 kb)
11104_2017_3371_MOESM2_ESM.docx (806 kb)
ESM 2 (DOCX 806 kb)
11104_2017_3371_MOESM3_ESM.docx (131 kb)
ESM 3 (DOCX 131 kb)
11104_2017_3371_MOESM4_ESM.docx (17 kb)
ESM 4 (DOCX 17.4 kb)
11104_2017_3371_MOESM5_ESM.docx (16 kb)
ESM 5 (DOCX 16.3 kb)
11104_2017_3371_MOESM6_ESM.docx (18 kb)
ESM 6 (DOCX 17.6 kb)


  1. Andersen TG, Nour-Eldin HH, Fuller VL, Olsen CE, Burow M, Halkier BA (2013) Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25:3133–3145CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baldermann S, Kato M, Kurosawa M, Kurobayashi Y, Fujita A, Fleischmann P, Watanabe N (2010) Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. J Exp Bot 61:2967–2977CrossRefPubMedGoogle Scholar
  3. Barsch A, Tellström V, Patschkowski T, Küster H, Niehaus K (2006) Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Mol Plant-Microbe Interact 19:998–1013CrossRefPubMedGoogle Scholar
  4. Belimov AA, Dodd IC, Safronova VI, Shaposhnikov AI, Azarova TS, Makarova NM, Davies WJ, Tikhonovich IA (2015) Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann Appl Biol 167:11–25CrossRefGoogle Scholar
  5. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18CrossRefPubMedGoogle Scholar
  6. Berger B, Wiesner M, Brock AK, Schreiner M, Ruppel S (2015) K. radicincitans, a beneficial bacteria that promotes radish growth under field conditions. Agron Sustain Dev 35:1521–1528CrossRefGoogle Scholar
  7. Berger B, Baldermann S, Ruppel S (2017) The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum. J Sci Food Agric: Epub ahead of print, doi: 10.1002/jsfa.8357
  8. Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  9. Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant-Microbe Interact 13:1170–1176CrossRefPubMedGoogle Scholar
  10. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329Google Scholar
  11. Brader G, Mikkelsen MD, Halkier BA, Palva ET (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J 46:758–767CrossRefPubMedGoogle Scholar
  12. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P (2013) Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319CrossRefPubMedGoogle Scholar
  13. Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153:1808–1822CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FE, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. Isme J 3:1243–1257CrossRefPubMedGoogle Scholar
  15. Brock A, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65:661–670CrossRefPubMedGoogle Scholar
  16. Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S, Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188CrossRefPubMedGoogle Scholar
  17. Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the AzospirillumOryza sativa association. Phytochemistry 87:65–77CrossRefPubMedGoogle Scholar
  18. Chao Y, Kang J, Zhang T, Yang Q, Gruber MY, Sun Y (2014) Disruption of the homogentisate solanesyltransferase gene results in albino and dwarf phenotypes and root, trichome and stomata defects in Arabidopsis Thaliana. PLoS One 9:e94031CrossRefPubMedPubMedCentralGoogle Scholar
  19. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  20. Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403CrossRefPubMedGoogle Scholar
  21. do Amaral FP, VCS P, ACM A, de Souza EM, Pedrosa F, Stacey G (2016) Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Mol Biol 90:689–697CrossRefPubMedGoogle Scholar
  22. Do C-T, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L (2007) Both caffeoyl coenzyme a 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129CrossRefPubMedGoogle Scholar
  23. Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379CrossRefGoogle Scholar
  24. Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 163:500–510CrossRefPubMedGoogle Scholar
  25. Dutta S, Rani TS, Podile AR (2013) Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS One 8:e78369CrossRefPubMedPubMedCentralGoogle Scholar
  26. El Zemrany H, Czarnes S, Hallett PD, Alamercery S, Bally R, Jocteur Monrozier L (2007) Early changes in root characteristics of maize (Zea Mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant Soil 291:109–118CrossRefGoogle Scholar
  27. Espinosa-Urgel M, Ramos JL (2004) Cell density-dependent gene contributes to efficient seed colonization by Pseudomonas putida KT2440. Appl Environ Microbiol 70:5190–5198CrossRefPubMedPubMedCentralGoogle Scholar
  28. Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303CrossRefGoogle Scholar
  29. Fernandez-Pinar R, Espinosa-Urgel M, Dubern JF, Heeb S, Ramos JL, Camara M (2012) Fatty acid-mediated signalling between two Pseudomonas species. Environ Microbiol Rep 4:417–423CrossRefPubMedGoogle Scholar
  30. Fourcroy P, Siso-Terraza P, Sudre D, Saviron M, Reyt G, Gaymard F, Abadia A, Abadia J, Alvarez-Fernandez A, Briat JF (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167CrossRefPubMedGoogle Scholar
  31. Gibeaut DM, Hulett J, Cramer GR, Seemann JR (1997) Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol 115:317–319CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1:1–9Google Scholar
  33. Höflich G, Ruppel S (1994) Growth stimulation of pea after inoculation with associative bacteria. Microbiol Res 149:99–104CrossRefGoogle Scholar
  34. Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effects of the tomato pathogen Fusarium oxysporum f. Sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microbe Interact 19:1121–1126CrossRefPubMedGoogle Scholar
  35. Kämpfer P, Ruppel S, Remus R (2005) Enterobacter radicincitans sp nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28:213–221CrossRefPubMedGoogle Scholar
  36. Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684CrossRefGoogle Scholar
  37. Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547CrossRefPubMedGoogle Scholar
  38. Lagendijk EL, Validov S, Lamers GEM, de Weert S, Bloemberg GV (2010) Genetic tools for tagging gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol Lett 305:81–90CrossRefPubMedGoogle Scholar
  39. Lakshmanan V, Castaneda R, Rudrappa T, Bais HP (2013) Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta 238:657–668CrossRefPubMedGoogle Scholar
  40. Liu M, Lu S (2016) Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering. Front Plant Sci 7:1898PubMedPubMedCentralGoogle Scholar
  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  42. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol, Annual Reviews, Palo AltoGoogle Scholar
  43. Matsuoka H, Akiyama M, Kobayashi K, Yamaji K (2013) Fe and P solubilization under limiting conditions by bacteria isolated from Carex kobomugi roots at the Hasaki coast. Curr Microbiol 66:314–321CrossRefPubMedGoogle Scholar
  44. Narula N, Kothe E, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual-Angew Bot 82:122–130Google Scholar
  45. Neugart S, Kläring HP, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A (2012) The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (Brassica oleracea Var. sabellica). Food Chem 133:1456–1465CrossRefGoogle Scholar
  46. O'Callaghan KJ, Stone PJ, Hu XJ, Griffiths DW, Davey MR, Cocking EC (2000) Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol 66:2185–2191CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K, Vuorela P (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305CrossRefPubMedGoogle Scholar
  48. Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831CrossRefPubMedPubMedCentralGoogle Scholar
  49. Peterson JK, Harrison HF, Jackson DM, Snook ME (2003) Biological activities and contents of scopolin and scopoletin in sweetpotato clones. Hortscience 38:1129–1133Google Scholar
  50. Poupin MJ, Timmermann T, Vega A, Zuniga A, Gonzalez B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8:e69435Google Scholar
  51. Remus R, Ruppel S, Jacob HJ, Hecht-Buchholz C, Merbach W (2000) Colonization behaviour of two enterobacterial strains on cereals. Biol Fertility Soils 30:550–557CrossRefGoogle Scholar
  52. Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837CrossRefPubMedGoogle Scholar
  54. Ruppel S (1988) Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of Triticum aestivum and Ammophila arenaria. In: Vancura V, Kunc F (eds) Interrelationships between microorganisms and plants in soil: developments in soil science. Elsevier Science Publishers, AmsterdamGoogle Scholar
  55. Ruppel S, Merbach W (1995) Effects of different nitrogen sources on nitrogen fixation and bacterial growth of Pantoea agglomerans and Azospirillum sp in bacterial pure culture: an investigation using 15N2 incorporation and acetylene reduction measures. Microbiol Res 150:409–418CrossRefGoogle Scholar
  56. Ruppel S, Rühlmann J, Merbach W (2006) Quantification and localization of bacteria in plant tissues using quantitative real-time PCR and online emission fingerprinting. Plant Soil 286:21–35CrossRefGoogle Scholar
  57. Ruppel S, Krumbein A, Schreiner M (2008) Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions. Microb Ecol 56:364–372CrossRefPubMedGoogle Scholar
  58. Schilling G, Gransee A, Deubel A, Lezovic G, Ruppel S (1998) Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z Pflanzen Bodenk 161:465–478CrossRefGoogle Scholar
  59. Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci U S A 111:585–592CrossRefPubMedGoogle Scholar
  60. Scholz-Seidel C, Ruppel S (1992) Nitrogenase activities and phytohormone activities of Pantoea agglomerans in culture and their reflection in combination with wheat plants. Zentralblatt Für Mikrobiologie 147:319–328Google Scholar
  61. Schreiner M, Krumbein A, Ruppel S (2009) Interaction between plants and bacteria: Glucosinolates and phyllospheric colonization of cruciferous vegetables by Enterobacter radicincitans DSM 16656. J Mol Microbiol Biotechnol 17:124–135CrossRefPubMedGoogle Scholar
  62. Schwachtje J, Karojet S, Thormahlen I, Bernholz C, Kunz S, Brouwer S, Schwochow M, Kohl K, van Dongen JT (2011) A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth. PLoS One 6:e29382Google Scholar
  63. Strehmel N, Böttcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35–46CrossRefPubMedGoogle Scholar
  64. Strehmel N, Monchgesang S, Herklotz S, Kruger S, Ziegler J, Scheel D (2016) Piriformospora indica stimulates root metabolism of Arabidopsis thaliana. Int J Mol Sci 17:1091Google Scholar
  65. Sun HH, Wang L, Zhang BQ, Ma JH, Hettenhausen C, Cao GY, Sun GL, Wu JQ, Wu JS (2014) Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. J Exp Bot 65:4305–4315CrossRefPubMedPubMedCentralGoogle Scholar
  66. Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6Google Scholar
  67. Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. In: Schrader J, Bohlmann J (eds) Biotechnology of Isoprenoids. Springer International Publishing, ChamGoogle Scholar
  68. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356Google Scholar
  69. van de Mortel JE, de Vos RCH, Dekkers E, Pineda A, Guillod L, Bouwmeester K, van Loon JJA, Dicke M, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–3529CrossRefPubMedPubMedCentralGoogle Scholar
  71. Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21:218–229CrossRefPubMedPubMedCentralGoogle Scholar
  72. Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908CrossRefPubMedGoogle Scholar
  73. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  74. Walker V, Bertrand C, Bellvert F, Moenne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506CrossRefPubMedGoogle Scholar
  75. Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moenne-Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163CrossRefGoogle Scholar
  76. Walter MH (2013) Role of carotenoid metabolism in the arbuscular mycorrhizal symbiosis. Molecular microbial ecology of the Rhizosphere. Wiley, IncGoogle Scholar
  77. Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17CrossRefPubMedGoogle Scholar
  78. Wang YQ, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396CrossRefPubMedGoogle Scholar
  79. Weston DJ, Pelletier DA, Morrell-Falvey JL, Tschaplinski TJ, Jawdy SS, Lu TY, Allen SM, Melton SJ, Martin MZ, Schadt CW, Karve AA, Chen JG, Yang XH, Doktycz MJ, Tuskan GA (2012) Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness. Mol Plant-Microbe Interact 25:765–778CrossRefPubMedGoogle Scholar
  80. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598CrossRefPubMedGoogle Scholar
  81. Wintermans PCA, Bakker P, Pieterse CMJ (2016) Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol Biol 90:623–634CrossRefPubMedPubMedCentralGoogle Scholar
  82. Witzel K, Gwinn-Giglio M, Nadendla S, Shefchek K, Ruppel S (2012) Genome sequence of Enterobacter radicincitans DSM16656T, a plant growth-promoting endophyte. J Bacteriol 194:5469CrossRefPubMedPubMedCentralGoogle Scholar
  83. Witzel K, Hanschen FS, Schreiner M, Krumbein A, Ruppel S, Grosch R (2013) Verticillium suppression is associated with the glucosinolate composition of Arabidopsis thaliana leaves. PLoS One 8:e71877CrossRefPubMedPubMedCentralGoogle Scholar
  84. Xu D, Hanschen FS, Witzel K, Nintemann SJ, Nour-Eldin HH, Schreiner M, Halkier BA (2016) Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis. J Exp Bot 68:3205–3214Google Scholar
  85. Zachow C, Muller H, Tilcher R, Berg G (2014) Differences between the rhizosphere microbiome of Beta vulgaris ssp maritima - ancestor of all beet crops - and modern sugar beets. Front Microbiol 5:13CrossRefGoogle Scholar
  86. Zhang Y, Ruyter-Spira C, Bouwmeester HJ (2015) Engineering the plant rhizosphere. Curr Opin Biotechnol 32:136–142CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Katja Witzel
    • 1
  • Nadine Strehmel
    • 2
    • 3
  • Susanne Baldermann
    • 1
    • 4
  • Susanne Neugart
    • 1
  • Yvonne Becker
    • 1
  • Matthias Becker
    • 1
  • Beatrice Berger
    • 1
  • Dierk Scheel
    • 2
  • Rita Grosch
    • 1
  • Monika Schreiner
    • 1
  • Silke Ruppel
    • 1
  1. 1.Leibniz Institute of Vegetable and Ornamental CropsGroßbeerenGermany
  2. 2.Leibniz Institute of Plant BiochemistryHalleGermany
  3. 3.Federal Institute of Forensic and Social MedicineBerlinGermany
  4. 4.Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany

Personalised recommendations