Advertisement

Plant and Soil

, Volume 419, Issue 1–2, pp 305–317 | Cite as

Leaf litter diversity positively affects the decomposition of plant polyphenols

  • Christian RistokEmail author
  • Katrin N. Leppert
  • Katrin Franke
  • Michael Scherer-Lorenzen
  • Pascal A. Niklaus
  • Ludger A. Wessjohann
  • Helge Bruelheide
Regular Article

Abstract

Background and Aims

Leaf litter decomposition is closely linked to nutrient cycling and driven by environmental conditions, species-specific leaf chemistry, and here in particular by polyphenols composition. However, not much attention has been paid on the decomposition of polyphenols themselves. We hypothesized that phenolics and tannin decomposition rates are species-specific and positively affected by litter species richness.

Methods

Leaf litter of three Chinese tree species was exposed to field decomposition conditions, aggregated in mixtures of different species richness (1-, 2-, 3-species mixtures). We sampled litter five times over the course of 171 days, calculated species-specific total phenolics and total protein precipitable tannin decomposition rates, assessed changes in polyphenol composition using HPLC, and tentatively identified compounds by LC-ESI-MS/MS.

Results

Leaf litter richness effects on phenolics and tannin decomposition rates were positive, except for Sapindus-specific tannins, and differed between leaf litter species. Decomposition duration changed polyphenol compositions, and significantly interacted with leaf litter species richness with increasing effects of litter richness with time.

Conclusions

Litter diversity effects on polyphenol decomposition are crucial for whole leaf litter decomposition. The contrasting dependencies of phenolics and tannin decomposition rates on leaf litter richness may provide explanations for equivocal results in leaf litter mixture experiments.

Keywords

BEF-China leaf litter decomposition HPLC leaf polyphenols litter species richness tannins 

Abbreviations

LMPs

Low molecular weight phenolics

HMPs

High molecular weight phenolics

LC

Liquid chromatography

HPLC

High-performance liquid chromatography

LC-MS

Liquid chromatography - mass spectrometry

ESI

Electro spray ionization

CID

Collision-induced dissociation

Notes

Acknowledgements

We thank N. Arnold, S. Both, A. Ehrlich, D. Eichenberg, U. Erhard. R. Heinke, M. Hiß, W. H. Müller, Z. Pei, B. Plaga, J. Schmidt, T. Walther and A. Zeuner for practical help. We gratefully acknowledge funding from the German Research Foundation (DFG FOR 891/1 and 2) and the Sino-German Centre for Research Promotion for the participation in a Summer School in Jingdezhen (GZ 1146). We thank the whole BEF-China, and especially the New Integrated Litter Experiment team for the inspiring working atmosphere. Finally, we thank two anonymous reviewers for comments and suggestions to improve the present manuscript.

Compliance with ethical standards

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Data Accessibility

Data on phenolics content, tannin content as well as peak area of all 93 quantified peaks are available on the BEF-China Data Portal at http://china.befdata.biow.uni-leipzig.de/datasets/492.

Supplementary material

11104_2017_3340_MOESM1_ESM.pdf (279 kb)
ESM 1 (PDF 279 kb)

References

  1. Adamczyk B, Karonen M, Adamczyk S et al (2017) Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol Biochem 107:60–67. doi: 10.1016/j.soilbio.2016.12.027 CrossRefGoogle Scholar
  2. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. doi: 10.2307/3546886 CrossRefGoogle Scholar
  3. Appel HM (1993) Phenolics in ecological interactions: The importance of oxidation. J Chem Ecol 19:1521–1552. doi: 10.1007/BF00984895 CrossRefPubMedGoogle Scholar
  4. Briones MJI, Ineson P (1996) Decomposition of eucalyptus leaves in litter mixtures. Soil Biol Biochem 28:1381–1388. doi: 10.1016/S0038-0717(96)00158-7 CrossRefGoogle Scholar
  5. Bruelheide H, Nadrowski K, Assmann T et al (2014) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol Evol 5:74–89. doi: 10.1111/2041-210X.12126 CrossRefGoogle Scholar
  6. Cadisch G, Giller KE (1997) Driven by nature: plant litter quality and decomposition. CAB International, WallingfordGoogle Scholar
  7. Close DC, McArthur C (2002) Rethinking the role of many plant phenolics–protection from photodamage not herbivores? Oikos 99:166–172. doi: 10.1034/j.1600-0706.2002.990117.x CrossRefGoogle Scholar
  8. Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi: 10.1111/j.1461-0248.2008.01219.x CrossRefPubMedGoogle Scholar
  9. Cotrufo MF, Wallenstein MD, Boot CM et al (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. doi: 10.1111/gcb.12113 CrossRefPubMedGoogle Scholar
  10. Coulis M, Hättenschwiler S, Rapior S, Coq S (2009) The fate of condensed tannins during litter consumption by soil animals. Soil Biol Biochem 41:2573–2578. doi: 10.1016/j.soilbio.2009.09.022 CrossRefGoogle Scholar
  11. Coûteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66. doi: 10.1016/S0169-5347(00)88978-8 CrossRefPubMedGoogle Scholar
  12. Deschamps AM, Richard C, Lebeault J-M (1983) Bacteriology and nutrition of environmental strains of Klebsiella pneumoniae involved in wood and bark decay. Ann Inst Pasteur Microbiol 134:189–196. doi: 10.1016/S0769-2609(83)80080-5 CrossRefGoogle Scholar
  13. Eichenberg D, Ristok C, Kröber W, Bruelheide H (2014) Plant polyphenols – implications of different sampling, storage and sample processing in biodiversity-ecosystem functioning experiments. Chem Ecol 30:676–692. doi: 10.1080/02757540.2014.894987 CrossRefGoogle Scholar
  14. Eichenberg D, Purschke O, Ristok C et al (2015) Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J Ecol 103:1667–1679. doi: 10.1111/1365-2745.12475 CrossRefGoogle Scholar
  15. Elzhov TV, Mullen KM, Spiess A-N, Bolker B (2013) minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. R package version 1.1-8Google Scholar
  16. García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S (2016) Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett 19:554–563. doi: 10.1111/ele.12590 CrossRefPubMedGoogle Scholar
  17. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. doi: 10.1111/j.0030-1299.2004.12738.x CrossRefGoogle Scholar
  18. Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40:801–805CrossRefGoogle Scholar
  19. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296. doi: 10.1038/nature06592 CrossRefPubMedGoogle Scholar
  20. Güsewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi: 10.1111/j.1469-8137.2004.01192.x CrossRefGoogle Scholar
  21. Haase K, Wantzen KM (2008) Analysis and decomposition of condensed tannins in tree leaves. Environ Chem Lett 6:71–75. doi: 10.1007/s10311-008-0140-7 CrossRefGoogle Scholar
  22. Hagerman AE (2002) Modified radial diffusion for increased sensitivity. http://www.users.miamioh.edu/hagermae/
  23. Handa IT, Aerts R, Berendse F et al (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221. doi: 10.1038/nature13247 CrossRefPubMedGoogle Scholar
  24. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243. doi: 10.1016/S0169-5347(00)01861-9 CrossRefPubMedGoogle Scholar
  25. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. doi: 10.1146/annurev.ecolsys.36.112904.151932 CrossRefGoogle Scholar
  26. Hector A, Beale AJ, Minns A et al (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371. doi: 10.1034/j.1600-0706.2000.900217.x CrossRefGoogle Scholar
  27. Hernes PJ, Benner R, Cowie GL et al (2001) Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach. Geochim Cosmochim Acta 65:3109–3122. doi: 10.1016/S0016-7037(01)00641-X CrossRefGoogle Scholar
  28. Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522. doi: 10.2307/2963492 CrossRefGoogle Scholar
  29. Kainulainen P, Holopainen JK (2002) Concentrations of secondary compounds in Scots pine needles at different stages of decomposition. Soil Biol Biochem 34:37–42. doi: 10.1016/S0038-0717(01)00147-X CrossRefGoogle Scholar
  30. Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems - a review. Plant Soil 256:41–66. doi: 10.1023/A:1026206511084 CrossRefGoogle Scholar
  31. Lin YM, Liu JW, Xiang P et al (2006) Tannin Dynamics of Propagules and Leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China. Biogeochemistry 78:343–359. doi: 10.1007/s10533-005-4427-5 CrossRefGoogle Scholar
  32. Lin YM, Liu JW, Xiang P et al (2007) Tannins and nitrogen dynamics in mangrove leaves at different age and decay stages (Jiulong River Estuary, China). Hydrobiologia 583:285–295. doi: 10.1007/s10750-006-0568-3 CrossRefGoogle Scholar
  33. Lorenz K, Preston CM, Raspe S et al (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–792. doi: 10.1016/S0038-0717(99)00201-1 CrossRefGoogle Scholar
  34. McTiernan KB, Ineson P, Coward PA (1997) Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527–538. doi: 10.2307/3545614 CrossRefGoogle Scholar
  35. Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472. doi: 10.2307/1936576 CrossRefGoogle Scholar
  36. Oksanen J, Blanchet FG, Kindt R et al (2013) Vegan: community ecology package. R package version 2.0–10Google Scholar
  37. Pérez-Harguindeguy N, Blundo CM, Gurvich DE et al (2008) More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil 303:151–159. doi: 10.1007/s11104-007-9495-y CrossRefGoogle Scholar
  38. Price ML, Butler LG (1977) Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J Agric Food Chem 25:1268–1273CrossRefGoogle Scholar
  39. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Rashed KN, Ćirić A, Glamočlija J et al (2013) Antimicrobial activity, growth inhibition of human tumour cell lines, and phytochemical characterization of the hydromethanolic extract obtained from Sapindus saponaria L. aerial parts. Biomed Res Int 2013:1–9. doi: 10.1155/2013/659183 CrossRefGoogle Scholar
  41. Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi: 10.1007/s11104-004-0907-y CrossRefGoogle Scholar
  42. Schimel JP, Cates RG, Ruess R (1998) The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 42:221–234. doi: 10.1023/A:1005911118982 CrossRefGoogle Scholar
  43. Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi: 10.1038/nature10386 CrossRefPubMedGoogle Scholar
  44. Schofield JA, Hagerman AE, Harold A (1998) Loss of tannins and other phenolics from willow leaf litter. J Chem Ecol 24:1409–1421. doi: 10.1023/A:1021287018787 CrossRefGoogle Scholar
  45. Smolander A, Kanerva S, Adamczyk B, Kitunen V (2012) Nitrogen transformations in boreal forest soils—does composition of plant secondary compounds give any explanations? Plant Soil 350:1–26. doi: 10.1007/s11104-011-0895-7 CrossRefGoogle Scholar
  46. Speed MP, Fenton A, Jones MG et al (2015) Coevolution can explain defensive secondary metabolite diversity in plants. New Phytol. doi: 10.1111/nph.13560
  47. Srivastava DS, Cardinale BJ, Downing AL et al (2009) Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90:1073–1083. doi: 10.1890/08-0439.1 CrossRefPubMedGoogle Scholar
  48. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, BerkeleyGoogle Scholar
  49. Torti SD, Dearing MD, Kursar TA (1995) Extraction of phenolic compounds from fresh leaves: a comparison of methods. J Chem Ecol 21:117–125. doi: 10.1007/BF02036646 CrossRefPubMedGoogle Scholar
  50. Wardle DA, Nilsson M-C, Zackrisson O, Gallet C (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem 35:827–835. doi: 10.1016/S0038-0717(03)00118-4 CrossRefGoogle Scholar
  51. Yang X, Bauhus J, Both S et al (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur J For Res 132:593–606. doi: 10.1007/s10342-013-0696-z CrossRefGoogle Scholar
  52. Zhang LH, Zhang SJ, Ye GF et al (2013) Changes of tannin and nutrients during decomposition of branchlets of Casuarina equisetifolia plantation in subtropical coastal areas of China. Plant Soil Environ 59:74–79Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Biology/Geobotany and Botanical GardenMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  2. 2.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  3. 3.Faculty of Biology, GeobotanyUniversity of FreiburgFreiburgGermany
  4. 4.Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryHalle (Saale)Germany
  5. 5.Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland

Personalised recommendations