Advertisement

Plant and Soil

, Volume 419, Issue 1–2, pp 237–256 | Cite as

An improved formula for evaluating electrical capacitance using the dissipation factor

  • Imre Cseresnyés
  • Sándor Kabos
  • Tünde Takács
  • Krisztina R. Végh
  • Eszter Vozáry
  • Kálmán Rajkai
Regular Article

Abstract

Background and aims

The measurement of electrical capacitance in root–soil system (CR) is a useful method for estimating the root system size (RSS) in situ; however, CR–RSS regressions are often poor. It was hypothesized that this weak relationships could be partly due to the variable energy-loss rate, indicated by the dissipation factor (DF).

Methods

The values of CR and the associated DF were measured in six plant species grown in quasi-hydroponic pumice medium, arenosol and chernozem soil. The dielectric properties of the plant growth media were also recorded. A modified root–soil capacitance, CDF, was calculated from each CR/DF pair according to the formula CDF = CR·(DF/DFmean)α by estimating α with a standard nonlinear minimization of the sum of squared residuals for CDF–RSS regressions.

Results

The capacitive behavior of the medium improved (mean DF decreased) but fluctuated increasingly as the substrate became more complex. The mean DF values in plant–substrate systems were chiefly determined by the plant and were the most variable in chernozem soil. This strengthening substrate effect on CR measurements appeared as a decreasing trend in the R2 values obtained for the CR–RSS regressions. The regression slope was influenced by plant species and medium, while the y-intercept differed only between substrate types. The proposed use of CDF in place of CR could significantly improve the R2 of CDF–RSS regressions, particularly in chernozem soil (R2 increased by 0.07–0.31).

Conclusions

The application of CDF will provide more reliable and accurate RSS estimations and more efficient statistical comparisons. The findings are worth considering in future investigations using the root capacitance method.

Keywords

Complex permittivity Dissipation factor Plant–soil system Root electrical capacitance Root system size Soil dielectric 

Abbreviations

AIC

Akaike’s Information Criterion

C

Electrical capacitance

Cp

Electrical capacitance of the planting substrate

CR

Electrical capacitance of the root–soil system

CDF

Electrical capacitance of the root–soil system corrected with dissipation factor

DF

Dissipation factor

NP

Number of model parameters

RDM

Root dry mass

RL

Root length

RSA

Root surface area

RSS

Root system size

Notes

Acknowledgements

This research was funded by the Hungarian National Research, Development and Innovation Office (Project No. K-115714). The authors thank Dr. Tapani Repo for valuable remarks and the anonymous reviewers for their helpful and constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arulanandan K (2003) Soil structure: In situ properties and behavior. University of California, DavisGoogle Scholar
  2. Aubrecht L, Staněk Z, Koller J (2006) Electrical measurement of the absorption surfaces of tree roots by the earth impedance methods: 1. Theory. Tree Physiol 26:1105–1112CrossRefPubMedGoogle Scholar
  3. Aulen M, Shipley B (2012) Non-destructive estimation of root mass using electrical capacitance on ten herbaceous species. Plant Soil 355:41–49. doi: 10.1007/s11104-011-1077-3 CrossRefGoogle Scholar
  4. Bárzana G, Aroca R, Paz HA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017. doi: 10.1093/aob/mcs007 CrossRefPubMedPubMedCentralGoogle Scholar
  5. van Beem J, Smith ME, Zobel RW (1998) Estimating root mass in maize using a portable capacitance meter. Agron J 90:566–570CrossRefGoogle Scholar
  6. Brady NC, Weil RR (2007) The Nature and Properties of Soils, 14th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  7. Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Method Res 33:261–304. doi: 10.1077/0049124104268644 CrossRefGoogle Scholar
  8. Buzás I (1988) Manual of Soil and Agrochemical Analysis [In Hungarian]. Mezőgazdasági Kiadó, BudapestGoogle Scholar
  9. Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P (2010) An appraisal of the electrical resistance method for assessing root surface area. J Exp Bot 61:2491–2497. doi: 10.1093/jxb/erq078 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chloupek O (1972) The relationship between electric capacitance and some other parameters of plant roots. Biol Plantarum 14:227–230CrossRefGoogle Scholar
  11. Chloupek O (1977) Evaluation of the size of a plant’s root system using its electrical capacitance. Plant Soil 48:525–532CrossRefGoogle Scholar
  12. Chloupek O, Forster BP, Thomas WTB (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112:779–786. doi: 10.1007/s00122-005-0147-4 CrossRefPubMedGoogle Scholar
  13. Chloupek O, Dostál V, Středa T, Psota V, Dvořáčková O (2010) Drought tolerance of barley varieties in relation to their root system size. Plant Breed 129:630–636. doi: 10.1111/j.1439-0523-2010-01801-x CrossRefGoogle Scholar
  14. Cseresnyés I, Rajkai K, Vozáry E (2013a) Role of phase angle measurement in electrical impedance spectroscopy. Int Agrophys 27:377–383. doi: 10.2478/intag-2013-0007 CrossRefGoogle Scholar
  15. Cseresnyés I, Takács T, Végh RK, Anton A, Rajkai K (2013b) Electrical impedance and capacitance method: A new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize. Eur J Soil Biol 54:25–31. doi: 10.1016/j.ejsobi.2012.11.001 CrossRefGoogle Scholar
  16. Cseresnyés I, Takács T, Füzy A, Rajkai K (2014) Simultaneous monitoring of electrical capacitance and water uptake activity of plant root system. Int Agrophys 28:537–541. doi: 10.2478/intag-2014-0044 CrossRefGoogle Scholar
  17. Cseresnyés I, Rajkai K, Takács T (2016) Indirect monitoring of root activity in soybean cultivars under contrasting moisture regimes by measuring electrical capacitance. Acta Physiol Plant 38: No. 121., 12 pp. doi: 10.1007/s11738-016-2149-z
  18. Dalton FN (1995) In-situ root extent measurements by electrical capacitance methods. Plant Soil 173:157–165. doi: 10.1007/BF00155527 CrossRefGoogle Scholar
  19. Dietrich RC, Bengough AG, Jones HG, White PJ (2012) A new physical interpretation of plant root capacitance. J Exp Bot 63:6149–6159. doi: 10.1093/jxb/ers264 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dietrich RC, Bengough AG, Jones HG, White PJ (2013) Can root electrical capacitance be used to predict root mass in soil? Ann Bot 112:457–464. doi: 10.1093/aob/mct044 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dvořák M, Černohorská J, Janáček K (1981) Characteristics of current passage through plant tissue. Biol Plantarum 23:306–310CrossRefGoogle Scholar
  22. Ellis T, Murray W, Kavalieris L (2013a) Electrical capacitance of bean (Vicia faba) root systems was related to tissue density – a test for the Dalton Model. Plant Soil 366:575–584. doi: 10.1007/s11104-012-1424-z CrossRefGoogle Scholar
  23. Ellis T, Murray W, Paul K, Kavalieris L, Brophy J, Williams C, Maass M (2013b) Electrical capacitance as a rapid non-invasive indicator of root length. Tree Physiol 33:3–17. doi: 10.1093/treephys/tps115 CrossRefPubMedGoogle Scholar
  24. Füzy A, Biró I, Kovács R, Takács T (2015) Estimation of AM fungal colonization – Comparability and reliability of classical methods. Acta Microbiol Immun Hung 62:435–452. doi: 10.1556/030.62.2015.4.8 CrossRefGoogle Scholar
  25. Grimnes S, Martinsen ØG (2015) Bioimpedance and Bioelectricity Basics, 3rd edn. Academic Press, OxfordGoogle Scholar
  26. Hilhorst MA (1998) Dielectric characterisation of soil. Dissertation, Wageningen Agricultural University, The NetherlandsGoogle Scholar
  27. Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264. doi: 10.1093/jexbot/52.365.2245 CrossRefPubMedGoogle Scholar
  28. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  29. Johnson SG (2014) The NLopt nonlinear optimization package – http://ab-initio.mit.edu/nlopt
  30. Kormanek M, Głąb T, Klimek-Kopyra A (2016) Modification of the tree root electrical capacitance method under laboratory conditions. Tree Physiol 36:121–127. doi: 10.1093/treephys/tpv088 CrossRefPubMedGoogle Scholar
  31. Livesley SJ, Stacey CL, Gregory PJ, Buresh RJ (1999) Sieve size effects on root length and biomass measurement of maize (Zea mays) and Grevillea robusta. Plant Soil 207:183–193CrossRefGoogle Scholar
  32. Mair P, Schönbrodt F, Wilcox R (2015) WRS2: Wilcox robust estimation and testing – https://r-forge.r-project.org
  33. McBride R, Candido M, Ferguson J (2008) Estimating root mass in maize genotypes using the electrical capacitance method. Arch Agron Soil Sci 54:215–226CrossRefGoogle Scholar
  34. Milchunas DG (2012) Biases and errors associated with different root production methods and their effects on field estimates of belowground net primary production. In: Mancuso S (ed) Measuring Roots. Springer, Berlin, pp 303–339CrossRefGoogle Scholar
  35. Muñoz-Romero V, Benítez-Vega J, López-Bellido RJ, Fontán JM, López-Bellido L (2010) Effect of tillage system on the root growth of spring wheat. Plant Soil 326:97–107. doi: 10.1007/11104-009-9983-3 CrossRefGoogle Scholar
  36. Oliveira MRG, van Noordwijk M, Gaze SR, Brouwer G, Bona S, Mosca G, Hairiah K (2000) Auger sampling, ingrowth cores and pinboard methods. In: Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (eds) Root Methods: A Handbook. Springer, Berlin, pp 175–210CrossRefGoogle Scholar
  37. Ozier-Lafontaine H, Bajazet T (2005) Analysis of root growth by impedance spectroscopy (EIS). Plant Soil 277:299–313. doi: 10.1007/s11104-005-7531-3 CrossRefGoogle Scholar
  38. Pitre FE, Brereton NJB, Audoire S, Richter GM, Shield I, Karp A (2010) Estimating root biomass in Salix viminalis × Salix schwerinii cultivar “Olof” using the electrical capacitance method. Plant Biosyst 144:479–483. doi: 10.1080/11263501003732092 CrossRefGoogle Scholar
  39. Postic F, Doussan C (2016) Benchmarking electrical methods for rapid estimation of root biomass. Plant Methods 12: No. 33., 11 pp. doi: 10.1186/s13007-016-0133-7
  40. Preston GM, McBride RA, Bryan J, Candido M (2004) Estimating root mass in young hybrid poplar trees using the electrical capacitance method. Agrofor Syst 60:305–309. doi: 10.1023/B:AGFO.0000024439.41932.e2 CrossRefGoogle Scholar
  41. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University PressGoogle Scholar
  42. Rajkai K, Végh RK, Nacsa T (2005) Electrical capacitance of roots in relation to plant electrodes, measuring frequency and root media. Acta Agron Hung 53:197–210CrossRefGoogle Scholar
  43. Repo T, Zhang MIN, Ryyppö A, Rikala R (2000) The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation. J Exp Bot 51:2095–2107CrossRefPubMedGoogle Scholar
  44. Repo T, Korhonen A, Laukkanen M, Lehto T, Silvennoinen R (2014) Detecting mycorrhizal colonization is Scots pine roots using electrical impedance spectra. Biosyst Eng 121:139–149. doi: 10.1016/j.biosystemseng.2014.02.014 CrossRefGoogle Scholar
  45. Rewald B, Ephrath JE (2013) Minirhizotron techniques. In: Eshel A, Beeckman T (eds) Plant Roots – The Hidden Half, 4th edn. CRC Press, Boca Raton, pp 42/1–4216CrossRefGoogle Scholar
  46. Singh U, Uehara G (1999) Electrochemistry of the double layer: Principles and applications to soils. In: Sparks DL (ed) Soil Physical Chemistry, 2nd edn. CRC Press, Boca Raton, pp 1–46Google Scholar
  47. Urban J, Bequet R, Mainiero R (2011) Assessing the applicability of the earth impedance method for in situ studies of tree root systems. J Exp Bot 62:1857–1869. doi: 10.1093/jxb/erq370 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wachsman G, Sparks EE, Benfey PN (2015) Genes and networks regulating root anatomy and architecture. New Phytol 208:26–38. doi: 10.1111/nph13469 CrossRefPubMedGoogle Scholar
  49. Wilcox R (2012) Introduction to robust estimation and hypothesis testing. Academic PressGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Imre Cseresnyés
    • 1
  • Sándor Kabos
    • 2
  • Tünde Takács
    • 1
  • Krisztina R. Végh
    • 1
  • Eszter Vozáry
    • 3
  • Kálmán Rajkai
    • 1
  1. 1.Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
  2. 2.Department of StatisticsEötvös Loránd UniversityBudapestHungary
  3. 3.Department of Physics and ControlSzent István UniversityBudapestHungary

Personalised recommendations