Plant and Soil

, Volume 419, Issue 1–2, pp 391–404 | Cite as

Root volume distribution of maturing perennial grasses revealed by correcting for minirhizotron surface effects

  • Christopher K. Black
  • Michael D. Masters
  • David S. LeBauer
  • Kristina J. Anderson-Teixeira
  • Evan H. DeLucia
Regular Article



Root architecture drives plant ecology and physiology, but current detection methods limit understanding of root placement within soil profiles. We developed a statistical model of root volume along depth gradients and used it to infer carbon storage potential of land-use changes from conventional agriculture to perennial bioenergy grasses.


We estimated root volume of maize-soybean rotation and three perennial grass systems (Miscanthus × giganteus, Panicum virgatum, tallgrass prairie mix) by Bayesian modeling from minirhizotron images, correcting for small images and near-surface underdetection. We monitored seasonal and inter-annual changes in root volume distribution, then validated our estimates against root mass from core samples.


The model explained 29% of root volume variation and validated well against core mass. Seventh-year perennials had greater belowground biomass than maize-soybean both in total (11-16×) and throughout the profile (2-17× at every depth < 120 cm). Perennials’ relative depth allocations were stable over time, while total root volume increased through five years. In 2012 a historically hot, dry summer damaged maize while perennials appeared resilient, suggesting their large-deep root systems aid drought resistance.


Perennial root systems are large, deep, and persistent. Converting row crops to perennial bioenergy grasses likely sequesters carbon in a large, potentially very stable, soil pool.


Minirhizotron Stan Bayesian modeling Root volume Root allocation 



We are grateful to R. J. Cody Markelz, John Brehm, and Laurel Brehm for statistical advice, and to Abisheik Pal, Christopher Sligar, Edwin Albrarran, Jacob Rosenthal, Michael Donovan, and Taylor Wright for their endless patience performing the root tracing. This research was funded by the Energy Biosciences Institute. The authors declare that they have no conflict of interest.

Supplementary material

11104_2017_3333_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 29 kb)
11104_2017_3333_MOESM2_ESM.docx (249 kb)
Fig. S1 (DOCX 248 kb)
11104_2017_3333_MOESM3_ESM.docx (500 kb)
Fig. S2 (DOCX 500 kb)
11104_2017_3333_MOESM4_ESM.docx (1.8 mb)
Fig. S3 (DOCX 1806 kb)
11104_2017_3333_MOESM5_ESM.docx (341 kb)
Fig. S4 (DOCX 341 kb)
11104_2017_3333_MOESM6_ESM.docx (598 kb)
Fig. S5 (DOCX 598 kb)
11104_2017_3333_MOESM7_ESM.docx (961 kb)
Fig. S6 (DOCX 960 kb)


  1. Agostini F, Gregory AS, Richter GM (2015) Carbon sequestration by perennial energy crops: is the jury still out? Bioenergy Res 8:1057–1080. doi: 10.1007/s12155-014-9571-0 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amougou N, Bertrand I, Machet J-M, Recous S (2011) Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus x giganteus, as affected by harvest date and N fertilization. Plant Soil 338:83–97. doi: 10.1007/s11104-010-0443-x CrossRefGoogle Scholar
  3. Anderson-Teixeira KJ, Masters MD, Black CK et al (2013) Altered belowground carbon cycling following land-use change to perennial bioenergy crops. Ecosystems 16:508–520. doi: 10.1007/s10021-012-9628-x CrossRefGoogle Scholar
  4. Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 28:1261–1263. doi: 10.1016/0038-0717(96)00112-5 CrossRefGoogle Scholar
  5. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699. doi: 10.1016/j.tree.2014.10.006 CrossRefPubMedGoogle Scholar
  6. Bernier PY, Robitaille G, Rioux D (2005) Estimating the mass density of fine roots of trees for minirhizotron-based estimates of productivity. Can J For Res 35:1708–1713. doi: 10.1139/x05-099 CrossRefGoogle Scholar
  7. Beuch S, Boelcke B, Belau L (2000) Effect of the organic residues of Miscanthus × giganteus on the soil organic matter level of arable soils. J Agron Crop Sci 183:111–119. doi: 10.1046/j.1439-037x.2000.00367.x CrossRefGoogle Scholar
  8. Black CK (2016) Plant root contributions to the carbon balance of a changing agricultural Midwest. University of Illinois Urbana-Champaign, USA, Doctoral Dissertation, p 131Google Scholar
  9. Black CK, Masters MD, LeBauer DS et al (2017) Data from: root volume distribution of maturing perennial grasses revealed by correcting for minirhizotron surface effects. doi: 10.5061/dryad.79822. Accessed 27 Jun 2017
  10. Bohm W, Maduakor H, Taylor HM (1977) Comparison of five methods for characterizing soybean rooting density and development. Agron J 69:415–419. doi: 10.2134/agronj1977.00021962006900030021x CrossRefGoogle Scholar
  11. Bragg PL, Govi G, Cannell RQ (1983) A comparison of methods, including angled and vertical minirhizotrons, for studying root growth and distribution in a spring oat crop. Plant Soil 73:435–440. doi: 10.1007/BF02184322 CrossRefGoogle Scholar
  12. Bransby DI, McLaughlin SB, Parrish DJ (1998) A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass Bioenergy 14:379–384. doi: 10.1016/S0961-9534(97)10074-5 CrossRefGoogle Scholar
  13. Carpenter B, Gelman A, Hoffman MD et al (2017) Stan: a probabilistic programming language. J Stat Softw 76:1–32. doi: 10.18637/jss.v076.i01 CrossRefGoogle Scholar
  14. Christian DG, Poulton PR, Riche AB et al (2006) The recovery over several seasons of 15N-labelled fertilizer applied to Miscanthus × giganteus ranging from 1 to 3 years old. Biomass Bioenergy 30:125–133. doi: 10.1016/j.biombioe.2005.11.002 CrossRefGoogle Scholar
  15. Collins HP, Smith JL, Fransen S et al (2010) Carbon sequestration under irrigated switchgrass (Panicum virgatum L.) production. Soil Sci Soc Am J 74:2049–2058. doi: 10.2136/sssaj2010.0020 CrossRefGoogle Scholar
  16. Comas LH, Eissenstat DM (2009) Patterns in root trait variation among 25 co-existing north American forest species. New Phytol 182:919–928. doi: 10.1111/j.1469-8137.2009.02799.x CrossRefPubMedGoogle Scholar
  17. Craine JM, Froehle J, Tilman DG et al (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93:274–285. doi: 10.1034/j.1600-0706.2001.930210.x CrossRefGoogle Scholar
  18. Craine JM, Wedin DA, Chapin FS III, Reich PB (2003) The dependence of root system properties on root system biomass of 10 north American grassland species. Plant Soil 250:39–47. doi: 10.1023/A:1022817813024 CrossRefGoogle Scholar
  19. De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. doi: 10.1111/j.1461-0248.2008.01164.x CrossRefPubMedGoogle Scholar
  20. de Vries FT, Brown C, Stevens CJ (2016) Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant Soil. doi: 10.1007/s11104-016-2964-4
  21. Dohleman FG, Heaton EA, Arundale RA, Long SP (2012) Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. Glob Chang Biol Bioenergy 4:534–544. doi: 10.1111/j.1757-1707.2011.01153.x CrossRefGoogle Scholar
  22. Ephrath JE, Silberbush M, Berliner P (1999) Calibration of minirhizotron readings against root length density data obtained from soil cores. Plant Soil 209:201–208. doi: 10.1023/A:1004556100253 CrossRefGoogle Scholar
  23. Frank AB, Berdahl JD, Hanson JD et al (2004) Biomass and carbon partitioning in switchgrass. Crop Sci 44:1391–1396. doi: 10.2135/cropsci2004.1391 CrossRefGoogle Scholar
  24. Garten CT Jr, Smith JL, Tyler DD et al (2010) Intra-annual changes in biomass, carbon, and nitrogen dynamics at 4-year old switchgrass field trials in west Tennessee, USA. Agric Ecosyst Environ 136:177–184. doi: 10.1016/j.agee.2009.12.019 CrossRefGoogle Scholar
  25. Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1:515–534. doi: 10.1214/06-BA117A CrossRefGoogle Scholar
  26. Gelman A (2008) The folk theorem of statistical computing Accessed 2 Dec 2016
  27. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472. doi: 10.1214/ss/1177011136 CrossRefGoogle Scholar
  28. Genney DR, Alexander IJ, Hartley SE (2002) Soil organic matter distribution and below-ground competition between Calluna vulgaris and Nardus stricta. Funct Ecol 16:664–670. doi: 10.1046/j.1365-2435.2002.00667.x CrossRefGoogle Scholar
  29. Gray SB, Dermody O, Klein SP et al (2016) Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat Plants 2:16132. doi: 10.1038/nplants.2016.132 CrossRefPubMedGoogle Scholar
  30. Hall AJ, Sinclair TR (2015) Rooting front and water uptake: what you see and get may differ. Agron J 107:1766. doi: 10.2134/agronj14.0551 CrossRefGoogle Scholar
  31. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi: 10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  32. Iversen CM, Murphy MT, Allen MF et al (2011) Advancing the use of minirhizotrons in wetlands. Plant Soil 352:23–39. doi: 10.1007/s11104-011-0953-1 CrossRefGoogle Scholar
  33. Jelinski NA, Kucharik CJ, Zedler JB (2011) A test of diversity-productivity models in natural, degraded, and restored wet prairies. Restor Ecol 19:186–193. doi: 10.1111/j.1526-100X.2009.00551.x CrossRefGoogle Scholar
  34. Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289. doi: 10.1016/S0098-8472(01)00077-6 CrossRefPubMedGoogle Scholar
  35. Joo E, Hussain MZ, Zeri M et al (2016) The influence of drought and heat stress on long-term carbon fluxes of bioenergy crops grown in the Midwestern USA. Plant Cell Environ 39:1928–1940. doi: 10.1111/pce.12751 CrossRefPubMedGoogle Scholar
  36. Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann Bot 108:407–418. doi: 10.1093/aob/mcr175 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kochian LV (2016) Root architecture. J Integr Plant Biol 58:190–192. doi: 10.1111/jipb.12471 CrossRefPubMedGoogle Scholar
  38. Kucharik CJ, Fayram NJ, Cahill KN (2006) A paired study of prairie carbon stocks, fluxes, and phenology: comparing the world’s oldest prairie restoration with an adjacent remnant. Glob Chang Biol 12:122–139. doi: 10.1111/j.1365-2486.2005.01053.x CrossRefGoogle Scholar
  39. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33. doi: 10.18637/jss.v069.i01 CrossRefGoogle Scholar
  40. Liu B, Li H, Zhu B et al (2015) Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol 208:125–136. doi: 10.1111/nph.13434 CrossRefPubMedGoogle Scholar
  41. Lynch JP, Brown KM (2001) Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. doi: 10.1023/A:1013324727040 CrossRefGoogle Scholar
  42. Mann JJ, Barney JN, Kyser GB, DiTomaso JM (2013) Root system dynamics of Miscanthus × giganteus and Panicum virgatum in response to rainfed and irrigated conditions in California. Bioenergy Res 6:678–687. doi: 10.1007/s12155-012-9287-y CrossRefGoogle Scholar
  43. Masters MD, Black CK, Kantola IB et al (2016) Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus × giganteus, and prairie. Agric Ecosyst Environ 216:51–60. doi: 10.1016/j.agee.2015.09.016 CrossRefGoogle Scholar
  44. Matamala RR, Jastrow JD, Miller RM, Garten CT (2008) Temporal changes in C and N stocks of restored prairie: implications for C sequestration strategies. Ecol Appl 18:1470–1488. doi: 10.1890/07-1609.1 CrossRefPubMedGoogle Scholar
  45. McCalmont JP, Hastings A, McNamara NP et al (2015) Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Glob Chang Biol Bioenergy. doi: 10.1111/gcbb.12294
  46. Metcalfe DB, Meir P, Williams M (2007) A comparison of methods for converting rhizotron root length measurements into estimates of root mass production per unit ground area. Plant Soil 301:279–288. doi: 10.1007/s11104-007-9447-6 CrossRefGoogle Scholar
  47. Milchunas DG (2009) Estimating root production: comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems 12:1381–1402. doi: 10.1007/s10021-009-9295-8 CrossRefGoogle Scholar
  48. Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root : shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96. doi: 10.1111/j.1365-2486.2005.001043.x CrossRefGoogle Scholar
  49. Mommer L, Wagemaker CAM, de Kroon H, Ouborg NJ (2008) Unravelling below-ground plant distributions: a real-time polymerase chain reaction method for quantifying species proportions in mixed root samples. Mol Ecol Resour 8:947–953. doi: 10.1111/j.1755-0998.2008.02130.x CrossRefPubMedGoogle Scholar
  50. Monti A, Zatta A (2009) Root distribution and soil moisture retrieval in perennial and annual energy crops in northern Italy. Agric Ecosyst Environ 132:252–259. doi: 10.1016/j.agee.2009.04.007 CrossRefGoogle Scholar
  51. Neukirchen D, Himken M, Lammel J et al (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309. doi: 10.1016/S1161-0301(99)00031-3 CrossRefGoogle Scholar
  52. Nippert J, Wieme R, Ocheltree T, Craine JM (2012) Root characteristics of C4 grasses limit reliance on deep soil water in tallgrass prairie. Plant Soil 355:385–394. doi: 10.1007/s11104-011-1112-4 CrossRefGoogle Scholar
  53. Pahlavanian AM, Silk WK (1988) Effect of temperature on spatial and temporal aspects of growth in the primary maize root. Plant Physiol 87:529–532. doi: 10.1104/pp.87.2.529 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Parker CJ, Carr MKV, Jarvis NJ et al (1991) An evaluation of the minirhizotron technique for estimating root distribution in potatoes. J Agric Sci 116:341–350. doi: 10.1017/S0021859600078151 CrossRefGoogle Scholar
  55. Picon-Cochard C, Pilon R, Tarroux E et al (2012) Effect of species, root branching order and season on the root traits of 13 perennial grass species. Plant Soil 353:47–57. doi: 10.1007/s11104-011-1007-4 CrossRefGoogle Scholar
  56. Pierret A, Moran CJ, Doussan C (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967–980. doi: 10.1111/j.1469-8137.2005.01389.x CrossRefPubMedGoogle Scholar
  57. Pinheiro J, Bates D, DebRoy S et al (2016) Nlme: linear and nonlinear mixed effects models. R package version 3.1–128. Accessed 21 Jun 2016
  58. Poorter H, Bühler J, van Dusschoten D et al (2012) Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct Plant Biol 39:839–850. doi: 10.1071/FP12049 CrossRefGoogle Scholar
  59. Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733. doi: 10.1111/1365-2745.12537 CrossRefGoogle Scholar
  60. R Core Team (2016) R: A language and environment for statistical computing Version 3.3.2. Accessed 19 Jan 2017
  61. Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi: 10.1007/s11104-004-0907-y CrossRefGoogle Scholar
  62. Roberts MJ, Long SP, Tieszen LL, Beadle CL (1993) Measurement of plant biomass and net primary production of herbaceous vegetation. In: Hall DO, Scurlock JMO, Bolhar-Nordenkampf HR et al (eds) Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman Hall, New York, pp 1–21Google Scholar
  63. Rose L (2017) Pitfalls in root trait calculations: how ignoring diameter heterogeneity can lead to overestimation of functional traits. Front Plant Sci 8:898. doi: 10.3389/fpls.2017.00898 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Roumet C, Urcelay C, Díaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368. doi: 10.1111/j.1469-8137.2006.01667.x CrossRefPubMedGoogle Scholar
  65. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi: 10.1007/s11104-010-0391-5 CrossRefGoogle Scholar
  66. Samson BK, Sinclair TR (1994) Soil core and minirhizotron comparison for the determination of root length density. Plant Soil 161:225–232. doi: 10.1007/BF00046393 CrossRefGoogle Scholar
  67. Smith CM, David MB, Mitchell CA et al (2013) Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops. J Environ Qual 42:219–228. doi: 10.2134/jeq2012.0210 CrossRefPubMedGoogle Scholar
  68. Sonderegger DL, Ogle K, Evans RD et al (2013) Temporal dynamics of fine roots under long-term exposure to elevated CO2 in the Mojave Desert. New Phytol 198:127–138. doi: 10.1111/nph.12128 CrossRefPubMedGoogle Scholar
  69. Stan Development Team (2016a) RStan: the R interface to Stan. R package version 2.14.1. Accessed 19 Jan 2017
  70. Stan Development Team (2016b) Stan Modeling Language Users Guide and Reference Manual, version 2.14.0. Accessed 19 Jan 2017
  71. Taylor HM, Upchurch D, McMichael B (1990) Application and limitation of rhizotrons and minirhizotrons for root studies. Plant Soil 129:29–35. doi: 10.1007/BF00011688 CrossRefGoogle Scholar
  72. Taylor BN, Beidler KV, Strand AE, Pritchard SG (2014) Improved scaling of minirhizotron data using an empirically-derived depth of field and correcting for the underestimation of root diameters. Plant Soil 374:941–948. doi: 10.1007/s11104-013-1930-7 CrossRefGoogle Scholar
  73. Topp CN, Bray AL, Ellis NA, Liu Z (2016) How can we harness quantitative genetic variation in crop root systems for agricultural improvement? J Integr Plant Biol 58:213–225. doi: 10.1111/jipb.12470 CrossRefPubMedGoogle Scholar
  74. Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148:459–471. doi: 10.1046/j.1469-8137.2000.00775.x CrossRefGoogle Scholar
  75. Ward SE, Smart SM, Quirk H et al (2016) Legacy effects of grassland management on soil carbon to depth. Glob Chang Biol 22:2829–2938. doi: 10.1111/gcb.13246 CrossRefGoogle Scholar
  76. Wasson AP, Richards RA, Chatrath R et al (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498. doi: 10.1093/jxb/ers111 CrossRefPubMedGoogle Scholar
  77. Zeri M, Anderson-Teixeira KJ, Hickman GC et al (2011) Carbon exchange by establishing biofuel crops in Central Illinois. Agric Ecosyst Environ 144:319–329. doi: 10.1016/j.agee.2011.09.006 CrossRefGoogle Scholar
  78. Zwicke M, Picon-Cochard C, Morvan-Bertrand A et al (2015) What functional strategies drive drought survival and recovery of perennial species from upland grassland? Ann Bot 116:1001–1015. doi: 10.1093/aob/mcv037 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christopher K. Black
    • 1
    • 2
  • Michael D. Masters
    • 2
    • 3
  • David S. LeBauer
    • 2
  • Kristina J. Anderson-Teixeira
    • 2
    • 4
    • 5
  • Evan H. DeLucia
    • 1
    • 2
    • 3
  1. 1.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Carl. R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Institute for Sustainability, Energy, and EnvironmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalUSA
  5. 5.Center for Tropical Forest Science – Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama

Personalised recommendations