Advertisement

Plant and Soil

, Volume 419, Issue 1–2, pp 53–70 | Cite as

Soil amendments alter plant biomass and soil microbial activity in a semi-desert grassland

  • Martha GebhardtEmail author
  • Jeffrey S. Fehmi
  • Craig Rasmussen
  • Rachel E. Gallery
Regular Article

Abstract

Aims

We tested the effects of soil biotic disturbance and biochar or woodchip amendments on plant growth, soil microbial biomass and activity, and soil physiochemical parameters in response to disturbance in a semi-desert grassland.

Methods

In a 78-day growth chamber experiment using six grass species native to the Southwest U.S., we compared the effects of autoclave heatshock, which mimics soil stockpiling in hot drylands, and amendments on plant and microbial biomass, potential extracellular enzyme activity, and soil moisture and nutrient availability.

Results

Plant biomass was lowest in woodchip-amended soils, and highest in autoclaved and biochar-amended soils (p < 0.05). Root:shoot ratios were higher in the autoclaved and woodchip-amended soils (p < 0.05). Biochar addition improved soil water-holding capacity resulting in higher dissolved organic carbon (p < 0.001) and nitrogen (p < 0.001). Soil microbial activity and plant biomass were not correlated. Amendment-induced changes in activity could be partially explained by nutrient availability. Neither microbial biomass nor activity recovered to pre-disturbance values.

Conclusions

In this study, biochar and woodchip amendment and autoclave-induced changes to moisture and nutrient availability influenced plant biomass allocation and soil microbial activity. Amendments increased carbon, nitrogen, and phosphorus mineralizing enzyme activities with no significant change in microbial biomass, indicating that soil recovery in drylands is a long-term process. Understanding plant-soil feedbacks in drylands is critically important to mitigating climate and anthropogenic-driven changes and retaining or reestablishing native plant communities.

Keywords

Autoclave heat-shock Biochar Drylands Extracellular enzyme activity Plant-soil feedbacks Woodchips 

Notes

Acknowledgements

This study was carried out with financial support from Rosemont Copper Company. JSF, REG, and CR received partial support from the University of Arizona Agricultural Experiment Station. REG acknowledges support from the National Institute of Food and Agriculture (NIFA ARZT-1360540-H12-199). We thank Jean McLain and Yusheng Qian for technical support and use of the PikoReal™ Real-Time PCR System, and two anonymous reviewers for their valuable comments and suggestions.

Supplementary material

11104_2017_3327_MOESM1_ESM.xlsx (33 kb)
ESM 1 (XLSX 32 kb)

References

  1. Alburquerque JA, Calero JM, Barrón V et al (2014) Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J Plant Nutr Soil Sci 177:16–25. doi: 10.1002/jpln.201200652 CrossRefGoogle Scholar
  2. Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944. doi: 10.1016/j.soilbio.2004.09.014 CrossRefGoogle Scholar
  3. Anderson-Teixeira KJ, Delong JP, Fox AM et al (2011) Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Glob Chang Biol 17:410–424. doi: 10.1111/j.1365-2486.2010.02269.x CrossRefGoogle Scholar
  4. Artiola JF, Rasmussen C, Freitas R (2012) Effects of a Biochar-Amended Alkaline Soil on the Growth of Romaine Lettuce and Bermudagrass. Soil Sci 177:561–570. doi: 10.1097/SS.0b013e31826ba908 CrossRefGoogle Scholar
  5. Asner GP, Archer S, Hughes RF et al (2003) Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937-1999. Glob Chang Biol 9:316–335. doi: 10.1046/j.1365-2486.2003.00594.x CrossRefGoogle Scholar
  6. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. doi: 10.1007/s11104-010-0464-5 CrossRefGoogle Scholar
  7. Bailey VL, Fansler SJ, Smith JL, Bolton H (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43:296–301. doi: 10.1016/j.soilbio.2010.10.014 CrossRefGoogle Scholar
  8. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479. doi: 10.1016/S0038-0717(99)00051-6 CrossRefGoogle Scholar
  9. Beck T, Joergensen RG, Kandeler E et al (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032. doi: 10.1016/S0038-0717(97)00030-8 CrossRefGoogle Scholar
  10. Bell C, Carrillo Y, Boot CM et al (2014) Rhizosphere stoichiometry: are C : N : P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytol 201:505–517. doi: 10.1111/nph.12531 CrossRefPubMedGoogle Scholar
  11. Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57. doi: 10.1007/BF00546879 CrossRefPubMedGoogle Scholar
  12. Berglund LM, DeLuca TH, Zackrisson O (2004) Activated carbon amendments to soil alters nitrification rates in Scots pine forests. Soil Biol Biochem 36:2067–2073. doi: 10.1016/j.soilbio.2004.06.005 CrossRefGoogle Scholar
  13. Berns AE, Philipp H, Narres H-D et al (2008) Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur J Soil Sci 59:540–550. doi: 10.1111/j.1365-2389.2008.01016.x CrossRefGoogle Scholar
  14. Bestelmeyer BT, Okin GS, Duniway MC et al (2015) Desertification, land use, and the transformation of global drylands. Front Ecol Environ 13:28–36. doi: 10.1890/140162 CrossRefGoogle Scholar
  15. Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214. doi: 10.1111/gcbb.12037 CrossRefGoogle Scholar
  16. Bindraban PS, van der Velde M, Ye L et al (2012) Assessing the impact of soil degradation on food production. Curr Opin Environ Sustain 4:478–488. doi: 10.1016/j.cosust.2012.09.015 CrossRefGoogle Scholar
  17. Blackwell P, Krull E, Butler G et al (2010) Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: an agronomic and economic perspective. Aust J Soil Res 48:531. doi: 10.1071/SR10014 CrossRefGoogle Scholar
  18. Blankinship JC, Becerra CA, Schaeffer SM, Schimel JP (2014) Separating cellular metabolism from exoenzyme activity in soil organic matter decomposition. Soil Biol Biochem 71:68–75. doi: 10.1016/j.soilbio.2014.01.010 CrossRefGoogle Scholar
  19. Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262. doi: 10.1016/j.soilbio.2013.10.004 CrossRefGoogle Scholar
  20. Brady NC, Weil RR (2008) The Nature and Properties of Soils, 14th edn. Pearson Prentice HallGoogle Scholar
  21. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22. doi: 10.1016/j.geoderma.2004.03.005 CrossRefGoogle Scholar
  22. Brookes P, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  23. Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79. doi: 10.1016/j.soilbio.2011.11.019 CrossRefGoogle Scholar
  24. Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43:795–803. doi: 10.1016/j.soilbio.2010.12.014 CrossRefGoogle Scholar
  25. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi: 10.1038/nature02322 CrossRefPubMedGoogle Scholar
  26. Carter DO, Yellowlees D, Tibbett M (2007) Autoclaving kills soil microbes yet soil enzymes remain active. Pedobiologia 51:295–299. doi: 10.1016/j.pedobi.2007.05.002 CrossRefGoogle Scholar
  27. Chalker-Scott L (2007) Impact of mulches on landscape plants and the environment-a review. J Environ Hortic 25:239–249Google Scholar
  28. Chapin FS, Matson PA, Vitousek PM (2011) Principles of Terrestrial Ecosystem Ecology, 2nd edn. Springer New York, New York, NYCrossRefGoogle Scholar
  29. Cheng C-H, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610. doi: 10.1016/j.gca.2008.01.010 CrossRefGoogle Scholar
  30. Clarkson DT (1985) Factors Affecting Mineral Nutrient Acquisition by Plants. Annu Rev Plant Physiol 36:77–115. doi: 10.1146/annurev.pp.36.060185.000453 CrossRefGoogle Scholar
  31. Cohen J (1992) A Power Primer. Psychol Bull 112:155–159CrossRefPubMedGoogle Scholar
  32. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi: 10.1023/A:1020809400075 CrossRefGoogle Scholar
  33. Davis JG, Whiting CR (2000) Choosing a Soil AmendmentGoogle Scholar
  34. Davis JM (1994) Comparison of Mulches for Fresh-market Basil Production. Hortscience 29:267–268Google Scholar
  35. Deenik JL, McClellan T, Uehara G et al (2010) Charcoal Volatile Matter Content Influences Plant Growth and Soil Nitrogen Transformations. Soil Sci Soc Am J 74:1259. doi: 10.2136/sssaj2009.0115 CrossRefGoogle Scholar
  36. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-Produced Charcoal Directly Influences Nitrogen Cycling in Ponderosa Pine Forests. Soil Sci Soc Am J 70:448. doi: 10.2136/sssaj2005.0096 CrossRefGoogle Scholar
  37. Dempster DN, Gleeson DB, Solaiman ZM et al (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324. doi: 10.1007/s11104-011-1067-5 CrossRefGoogle Scholar
  38. Dick RP (1992) A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosyst Environ 40:25–36. doi: 10.1016/0167-8809(92)90081-L CrossRefGoogle Scholar
  39. Dietzel R, Jarchow ME, Liebman M (2015) Above- and Belowground Growth, Biomass, and Nitrogen Use in Maize and Reconstructed Prairie Cropping Systems. Crop Sci 55:910. doi: 10.2135/cropsci2014.08.0572 CrossRefGoogle Scholar
  40. Doane TA, Horwáth WR (2003) Spectrophotometric Determination of Nitrate with a Single Reagent. Anal Lett 36:2713–2722. doi: 10.1081/AL-120024647 CrossRefGoogle Scholar
  41. Downer J, Faber B, Menge J (2002) Factors affecting root rot control in mulched avocado orchards. HortTechnology 12:601–605Google Scholar
  42. Downer J, Hodel D (2001) The effects of mulching on establishment of Syagrus romanzoffiana ( Cham.) Becc., Washingtonia cunninghamiana (H. Wendl.) H. Wendl. and Drude in the landscape. Sci Hortic 87:85–92. doi: 10.1016/S0304-4238(00)00171-0 CrossRefGoogle Scholar
  43. Ehaliotis C, Cadisch G, Giller KE (1998) Substrate amendments can alter microbial dynamics and N availability from maize residues to subsequent crops. Soil Biol Biochem 30:1281–1292. doi: 10.1016/S0038-0717(98)00035-2 CrossRefGoogle Scholar
  44. Fehmi JS, Kong TM (2012) Effects of soil type, rainfall, straw mulch, and fertilizer on semi-arid vegetation establishment, growth and diversity. Ecol Eng 44:70–77. doi: 10.1016/j.ecoleng.2012.04.014 CrossRefGoogle Scholar
  45. Fehmi JS, Niu G-Y, Scott RL, Mathias A (2014) Evaluating the effect of rainfall variability on vegetation establishment in a semidesert grassland. Environ Monit Assess 186:395–406. doi: 10.1007/s10661-013-3384-z CrossRefPubMedGoogle Scholar
  46. Garfin G, Jardine A, Merideth R et al (2013) Assessment of Climate Change in the Southwest United States. Island Press/Center for Resource Economics, Washington, DCCrossRefGoogle Scholar
  47. Getenga ZM, Dorfler U, Reiner S, Sabine K (2004) Determination of a Suitable Sterilization Method for Soil in Isoproturon Biodegradation Studies. Bull Environ Contam Toxicol 72:415–421. doi: 10.1007/s00128-003-9106-4 CrossRefPubMedGoogle Scholar
  48. Glaser B, Balashov E, Haumaier L et al (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678. doi: 10.1016/S0146-6380(00)00044-9 CrossRefGoogle Scholar
  49. Greenan CM, Moorman TB, Kaspar TC et al (2006) Comparing Carbon Substrates for Denitrification of Subsurface Drainage Water. J Environ Qual 35:824. doi: 10.2134/jeq2005.0247 CrossRefPubMedGoogle Scholar
  50. Gruda N (2008) The Effect of Wood Fiber Mulch on Water Retention, Soil Temperature and Growth of Vegetable Plants. J Sustain Agric 32:629–644. doi: 10.1080/10440040802395049 CrossRefGoogle Scholar
  51. Güereña D, Lehmann J, Hanley K et al (2013) Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 365:239–254. doi: 10.1007/s11104-012-1383-4 CrossRefGoogle Scholar
  52. Gul S, Whalen JK, Thomas BW et al (2015) Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric Ecosyst Environ 206:46–59. doi: 10.1016/j.agee.2015.03.015 CrossRefGoogle Scholar
  53. Hanson CA, Allison SD, Bradford MA et al (2008) Fungal Taxa Target Different Carbon Sources in Forest Soil. Ecosystems 11:1157–1167. doi: 10.1007/s10021-008-9186-4 CrossRefGoogle Scholar
  54. Harris DR (1966) Recent plant invasions in the arid and semi-arid Southwest of the United States. Ann Assoc Am Geogr 56:408–422. doi: 10.1111/j.1467-8306.1966.tb00569.x CrossRefGoogle Scholar
  55. Homyak PM, Yanai RD, Burns DA et al (2008) Nitrogen immobilization by wood-chip application: Protecting water quality in a northern hardwood forest. For Ecol Manag 255:2589–2601. doi: 10.1016/j.foreco.2008.01.018 CrossRefGoogle Scholar
  56. Hunt R, Nicholls AO (1986) Stress and the Coarse Control of Growth and Root-Shoot Partitioning in Herbaceous Plants. Oikos 47:149. doi: 10.2307/3566039 CrossRefGoogle Scholar
  57. Huxman TE, Snyder KA, Tissue D et al (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268. doi: 10.1007/s00442-004-1682-4 CrossRefPubMedGoogle Scholar
  58. Jenerette GD, Wu J, Grimm NB, Hope D (2006) Points, patches, and regions: scaling soil biogeochemical patterns in an urbanized arid ecosystem. Glob Chang Biol 12:1532–1544. doi: 10.1111/j.1365-2486.2006.01182.x CrossRefGoogle Scholar
  59. Kookana RS, Sarmah AK, Van Zwieten L, et al (2011) Biochar application to soil: Agronomic and environmental benefits and unintended consequences. In: Advances in Agronomy, 1st edn. Elsevier Inc., pp 103–143Google Scholar
  60. Kraus HT (1998) Effects of Mulch on Soil Moisture and Growth of Desert Willow. HortTechnology 8:588–590Google Scholar
  61. Lehmann J, Rillig MC, Thies J et al (2011) Biochar effects on soil biota – A review. Soil Biol Biochem 43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022 CrossRefGoogle Scholar
  62. Leonowicz A, Matuszewska A, Luterek J et al (1999) Biodegradation of Lignin by White Rot Fungi. Fungal Genet Biol 27:175–185. doi: 10.1006/fgbi.1999.1150 CrossRefPubMedGoogle Scholar
  63. Li X, You F, Huang L et al (2013) Dynamics in leachate chemistry of Cu-Au tailings in response to biochar and woodchip amendments: a column leaching study. Environ Sci Eur 25:32. doi: 10.1186/2190-4715-25-32 CrossRefGoogle Scholar
  64. Liang B, Lehmann J, Solomon D et al (2006) Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci Soc Am J 70:1719. doi: 10.2136/sssaj2005.0383 CrossRefGoogle Scholar
  65. Liebich J, Vereecken H, Burauel P (2006) Microbial community changes during humification of 14C-labelled maize straw in heat-treated and native Orthic Luvisol. Eur J Soil Sci 57:446–455. doi: 10.1111/j.1365-2389.2006.00815.x CrossRefGoogle Scholar
  66. Lorenz K, Lal R (2014) Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Plant Nutr Soil Sci 177:651–670. doi: 10.1002/jpln.201400058 CrossRefGoogle Scholar
  67. Mahmood T, Mehnaz S, Fleischmann F et al (2014) Soil sterilization effects on root growth and formation of rhizosheaths in wheat seedlings. Pedobiologia 57:123–130. doi: 10.1016/j.pedobi.2013.12.005 CrossRefGoogle Scholar
  68. Makoto K, Tamai Y, Kim YS, Koike T (2010) Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant Soil 327:143–152. doi: 10.1007/s11104-009-0040-z CrossRefGoogle Scholar
  69. Miller EM, Seastedt TR (2009) Impacts of woodchip amendments and soil nutrient availability on understory vegetation establishment following thinning of a ponderosa pine forest. For Ecol Manag 258:263–272. doi: 10.1016/j.foreco.2009.04.011 CrossRefGoogle Scholar
  70. Moorman TB, Parkin TB, Kaspar TC, Jaynes DB (2010) Denitrification activity, wood loss, and N2O emissions over 9 years from a wood chip bioreactor. Ecol Eng 36:1567–1574. doi: 10.1016/j.ecoleng.2010.03.012 CrossRefGoogle Scholar
  71. Moreno-de las Heras M, Turnbull L, Wainwright J (2016) Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone. Ecology 97:2303–2318. doi: 10.1002/ecy.1446 CrossRefPubMedGoogle Scholar
  72. Nelson DW, Sommers LE (1965) Total Carbon, Organic Carbon, and Organic Matter. In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Inc., Madison, Wisconsin, pp 539–579Google Scholar
  73. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. doi: 10.1111/j.1462-2920.2008.01701.x CrossRefPubMedGoogle Scholar
  74. Ohsowski BM, Klironomos JN, Dunfield KE, Hart MM (2012) The potential of soil amendments for restoring severely disturbed grasslands. Appl Soil Ecol 60:77–83. doi: 10.1016/j.apsoil.2012.02.006 CrossRefGoogle Scholar
  75. Pachauri RK, Meyer L, Van Ypersele J-P et al (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, SwitzerlandGoogle Scholar
  76. Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242. doi: 10.1034/j.1600-0706.2000.890203.x CrossRefGoogle Scholar
  77. Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607. doi: 10.1071/PP99173_CO CrossRefGoogle Scholar
  78. Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University PressGoogle Scholar
  79. R Development Core Team (2011) R: A language and environment for statistical computingGoogle Scholar
  80. Rasmussen C, Gallery RE, Fehmi JS (2015) Passive soil heating using an inexpensive infrared mirror design – a proof of concept. Soil 1:631–639. doi: 10.5194/soil-1-631-2015 CrossRefGoogle Scholar
  81. Reynolds JF, Smith DMS, Lambin EF et al (2007) Global Desertification: Building a Science for Dryland Development. Science 316:847–851. doi: 10.1126/science.1131634 CrossRefPubMedGoogle Scholar
  82. Rhine ED, Mulvaney RL, Pratt EJ, Sims GK (1998) Improving the Berthelot Reaction for Determining Ammonium in Soil Extracts and Water. Soil Sci Soc Am J 62:473. doi: 10.2136/sssaj1998.03615995006200020026x CrossRefGoogle Scholar
  83. Rhoades CC, Battaglia MA, Rocca ME, Ryan MG (2012) Short- and medium-term effects of fuel reduction mulch treatments on soil nitrogen availability in Colorado conifer forests. For Ecol Manag 276:231–238. doi: 10.1016/j.foreco.2012.03.028 CrossRefGoogle Scholar
  84. Ritalahti KM, Amos BK, Sung Y et al (2006) Quantitative PCR Targeting 16S rRNA and Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides Strains. Appl Environ Microbiol 72:2765–2774. doi: 10.1128/AEM.72.4.2765-2774.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Robertson G, Wedin D, Groffman P, et al (1999) Soil carbon and nitrogen availability. Nitrogen mineralization, nitrification and soil respiration potentials. Stand Soil Methods Long-term Ecol Res 258–271Google Scholar
  86. Salonius PO, Robinson JB, Chase FE (1967) A comparison of autoclaved and gamma-irradiated soils as media for microbial colonization experiments. Plant Soil 27:239–248. doi: 10.1007/BF01373392 CrossRefGoogle Scholar
  87. Sanchez E, Gallery R, Dalling JW (2009) Importance of nurse logs as a substrate for the regeneration of pioneer tree species on Barro Colorado Island, Panama. J Trop Ecol 25:429–437. doi: 10.1017/S0266467409006130 CrossRefGoogle Scholar
  88. Scharenbroch BC (2009) A Meta-analysis of Studies Published in Arboriculture & Urban Forestry Relating to Organic Materials and Impacts on Soil, Tree, and Environmental Properties. Arboricult Urban For 35:221–231Google Scholar
  89. Scheiner SM, Gurevitch J (eds) (2001) Design and Analysis of Ecological Experiments, 2nd edn. Oxford University PressGoogle Scholar
  90. Schimmelpfennig S, Müller C, Grünhage L et al (2014) Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agric Ecosyst Environ 191:39–52. doi: 10.1016/j.agee.2014.03.027 CrossRefGoogle Scholar
  91. Schlesinger WH, Reynolds JF, Cunningham GL et al (1990) Biological Feedbacks in Global Desertification. Science 247:1043–1048. doi: 10.1126/science.247.4946.1043 CrossRefPubMedGoogle Scholar
  92. Serrasolsas I, Khanna P (1995) Changes in heated and autoclaved forest soils of S.E. Australia. I. Carbon and nitrogen. Biogeochemistry 29:3–24. doi: 10.1007/BF00002591 Google Scholar
  93. Sinkevičienė A, Jodaugienė D, Pupalienė R, Urbonienė M (2009) The influence of organic mulches on soil properties and crop yield. Agron Res 7:485–491Google Scholar
  94. Sinsabaugh RL, Lauber CL, Weintraub MN et al (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264. doi: 10.1111/j.1461-0248.2008.01245.x PubMedGoogle Scholar
  95. Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347. doi: 10.1016/j.soilbio.2010.09.013 CrossRefGoogle Scholar
  96. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A Review of Biochar and Its Use and Function in Soil. In: Advances in Agronomy, 1st edn. Elsevier Inc., pp 47–82Google Scholar
  97. Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310. doi: 10.1016/j.soilbio.2009.03.016 CrossRefGoogle Scholar
  98. Stratton ML, Rechcigl JE (1998) Organic mulches, wood products, and composts as soil amendments and conditioners. In: Wallace A, Terry RE (eds) Handbook of Soil Conditioners: Substances That Enhance the Physical Properties of Soil, 62nd edn. Marcel Dekker, Inc., pp 43–96Google Scholar
  99. Stursova M, Sinsabaugh RL (2008) Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biol Biochem 40:550–553. doi: 10.1016/j.soilbio.2007.09.002 CrossRefGoogle Scholar
  100. Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM (2012) Biochar adsorbed ammonia is bioavailable. Plant Soil 350:57–69. doi: 10.1007/s11104-011-0870-3 CrossRefGoogle Scholar
  101. Tian J, Wang J, Dippold M et al (2016) Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci Total Environ 556:89–97. doi: 10.1016/j.scitotenv.2016.03.010 CrossRefPubMedGoogle Scholar
  102. Trevors JT (1996) Sterilization and inhibition of microbial activity in soil. J Microbiol Methods 26:53–59. doi: 10.1016/0167-7012(96)00843-3 CrossRefGoogle Scholar
  103. Tuller M, Or D (2004) Water retention and characteristic curve. Encycl. Soils Environ. 278–289Google Scholar
  104. Van Rensburg L, Morgenthal T (2004) The effect of woodchip waste on vegetation establishment during platinum tailings rehabilitation. S Afr J Sci 100:294–301Google Scholar
  105. Venner K, Preston C, Prescott C (2011) Characteristics of wood wastes in British Columbia and their potential suitability as soil amendments and seedling growth media. Can J Soil Sci 91:95–106. doi: 10.4141/cjss09109 CrossRefGoogle Scholar
  106. Visser S, Fujikawa J, Griffiths CL, Parkinson D (1984) Effect of topsoil storage on microbial activity, primary production and decomposition potential. Plant and Soil 82(1):41–50. doi: 10.1007/BF02220768
  107. Wallenstein MD, Haddix ML, Lee DD et al (2012) A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biol Biochem 47:18–26. doi: 10.1016/j.soilbio.2011.12.009 CrossRefGoogle Scholar
  108. Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106. doi: 10.1016/j.soilbio.2008.01.024 CrossRefGoogle Scholar
  109. Wang X, Taub DR (2010) Interactive effects of elevated carbon dioxide and environmental stresses on root mass fraction in plants: a meta-analytical synthesis using pairwise techniques. Oecologia 163:1–11. doi: 10.1007/s00442-010-1572-x CrossRefPubMedGoogle Scholar
  110. Wong M (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780. doi: 10.1016/S0045-6535(02)00232-1 CrossRefPubMedGoogle Scholar
  111. Zackrisson O, Nilsson M, Wardle DA (1996) Key Ecological Function of Charcoal from Wildfire in the Boreal Forest. Oikos 77:10–19. doi: 10.2307/3545580 CrossRefGoogle Scholar
  112. Zamani J, Hajabbasi MA, Alaie E (2015) The Effect of Steam Sterilization of a Petroleum-Contaminated Soil on PAH Concentration and Maize (Zea mays L.) Growth. Int J Curr Microbiol App Sci 4:93–104Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Natural Resources and the Environment, Environment and Natural Resources 2The University of ArizonaTucsonUSA
  2. 2.Department of Soil, Water, and Environmental ScienceThe University of ArizonaTucsonUSA
  3. 3.Department of Ecology and Evolutionary BiologyThe University of ArizonaTucsonUSA

Personalised recommendations