Plant and Soil

, Volume 418, Issue 1–2, pp 307–317 | Cite as

Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat

  • Jessica E. Mackay
  • Timothy R. Cavagnaro
  • Iver Jakobsen
  • Lynne M. Macdonald
  • Mette Grønlund
  • Tobias P. Thomsen
  • Dorette S. Müller-Stöver
Regular Article

Abstract

Aims

Dried sewage sludge (SS) and the by-products of four SS thermal conversion processes (pyrolysis, incineration and two types of gasification) were investigated for phosphorus (P) availability.

Methods

A sequential extraction was used to determine the distribution of P among different P pools. After mixing materials with soil, availability of the P was determined with soil P extractions and in a growth experiment with wheat.

Results

Thermally converted SS contained a greater proportion of P within recalcitrant pools than dried SS. Despite having very different P pool distributions, the incinerated and dried SS provided similar amounts of P to plants. Plant P supply from dried and incinerated SS was lower than the comparable soluble P treatment (50 mg P kg−1), but higher than a soluble treatment at a lower rate (20 mg P kg−1). Plant P uptake in gasified and pyrolysed treatments was only marginally greater than uptake in a control (no P) treatment. Plant P uptake correlated most closely with diffusive gradients in thin films (DGT) P analysis of soil-material mixes. Phosphorus availability in the dried and incinerated SS treatments increased over time.

Conclusions

We propose that the dried and incinerated SS have potential as slow release P fertilisers in low pH soils.

Keywords

Biochar Bioash Sequential phosphorus extraction Diffusive gradients in thin films (DGT) Wheat Sewage sludge 

Supplementary material

11104_2017_3298_MOESM1_ESM.pdf (259 kb)
(PDF 258 KB)

References

  1. Ahrenfeldt J, Henriksen U, Jensen T K, Gøbel B, Wiese L, Kather A, Egsgaard H (2006) Validation of a continuous combined heat and power (CHP) operation of a two-stage biomass gasifier. Energy Fuels 20(6):2672–2680. doi:10.1021/ef0503616 CrossRefGoogle Scholar
  2. Bruun S, Harmer S L, Bekiaris G, Christel W, Zuin L, Hu Y, Jensen L S, Lombi E (2017) The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere 169:377–386. doi:10.1016/j.chemosphere.2016.11.058 CrossRefPubMedGoogle Scholar
  3. Cabeza R, Steingrobe B, Römer W, Claassen N (2011) Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutrient Cycling in Agroecosystems 91(2):173. doi:10.1007/s10705-011-9454-0 CrossRefGoogle Scholar
  4. Colwell J (1963) The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Anim Prod Sci 3(10):190–197CrossRefGoogle Scholar
  5. DeLuca T H, Gundale M J, MacKenzie M D, Jones D L (2015) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Taylor and Francis, New York, pp 421–454Google Scholar
  6. Gaskin J W, Steiner C, Harris K, Das K C, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51(6):2061–2069. doi:10.13031/2013.25409 CrossRefGoogle Scholar
  7. Harrison E Z, Oakes S R, Hysell M, Hay A (2006) Organic chemicals in sewage sludges. Sci Total Environ 367(2–3):481–497. doi:10.1016/j.scitotenv.2006.04.002 CrossRefPubMedGoogle Scholar
  8. Hedley M J, Stewart J W B, Chauhan B S (1982a) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46(5):970. doi:10.2136/sssaj1982.03615995004600050017x
  9. Hedley M J, White R E, Nye P H (1982b) Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. New Phytologist 91(1):45–56. doi:10.1111/j.1469-8137.1982.tb03291.x
  10. Henriksen U, Ahrenfeldt J, Jensen T K, Gøbel B, Bentzen JD, Hindsgaul C, Sørensen LH (2006) The design, construction and operation of a 75 kW two-stage gasifier. Energy 31(10–11):1542–1553. doi:10.1016/j.energy.2005.05.031 CrossRefGoogle Scholar
  11. Herzel H, Krüger O, Hermann L, Adam C (2016) Sewage sludge ash—a promising secondary phosphorus source for fertilizer production. Sci Total Environ Part B 542:1136–1143. doi:10.1016/j.scitotenv.2015.08.059 CrossRefGoogle Scholar
  12. Huang R, Tang Y (2015) Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environ Sci Technol 49(24):14466–14474. doi:10.1021/acs.est.5b04140 CrossRefPubMedGoogle Scholar
  13. Ippolito J A, Spokas K A, Novak J M, Lentz R D, Cantrell K B (2015) Biochar elemental composition and factors influencing nutrient retention. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Taylor and Francis, New York, USA, pp 139–163Google Scholar
  14. Jakobsen P, Willett I R (1986) Comparisons of the fertilizing and liming properties of lime-treated sewage sludge with its incinerated ash. Fertil Res 9(3):187–197. doi:10.1007/BF01050345 CrossRefGoogle Scholar
  15. Kauffman N, Dumortier J, Hayes D J, Brown R C, Laird D A (2014) Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass Bioenergy 63:167–176. doi:10.1016/j.biombioe.2014.01.049 CrossRefGoogle Scholar
  16. Kuligowski K, Poulsen T G, Rubæk GH, Sørensen P (2010) Plant-availability to barley of phosphorus in ash from thermally treated animal manure in comparison to other manure based materials and commercial fertilizer. Eur J Agron 33(4):293–303. doi:10.1016/j.eja.2010.08.003 CrossRefGoogle Scholar
  17. Ma N, Zhang L, Zhang Y, Yang L, Yu C, Yin G, Doane T A, Wu Z, Zhu P, Ma X (2016) Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PLOS ONE 11(5):e0154091. doi:10.1371/journal.pone.0154091 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mackay JE, Macdonald LM, Smernik RJ, Cavagnaro TR (2017) Organic amendments as phosphorus fertilisers: Chemical analyses, biological processes and plant P uptake. Soil Biol Biochem 107:50–59. doi:10.1016/j.soilbio.2016.12.008 CrossRefGoogle Scholar
  19. Mason S, McNeill A, McLaughlin M J, Zhang H (2010) Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant Soil 337(1–2):243–258. doi:10.1007/s11104-010-0521-0 CrossRefGoogle Scholar
  20. McLaughlin M J, Champion L (1987) Sewage sludge as a phosphorus amendment for sesquioxic soils. Soil Science 143(2):113–119CrossRefGoogle Scholar
  21. Mellbye M E, Hemphill D D, Volk V V (1982) Sweet corn growth on incinerated sewage sludge-amended soil. J Environ Qual 11(2):160. doi:10.2134/jeq1982.00472425001100020002x CrossRefGoogle Scholar
  22. Metson G S, Bennett E M (2015) Phosphorus cycling in Montreal’s food and urban agriculture systems. PLoS ONE 10(3):e0120726. doi:10.1371/journal.pone.0120726 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Müller-Stöver D S, Ahrenfeldt J, Holm J K, Shalatet S G S, Henriksen U B, Hauggaard-Nielsen H (2012) Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response. Nutr Cycl Agroecosyst 94(2–3):193–207. doi:10.1007/s10705-012-9533-x CrossRefGoogle Scholar
  24. Nanzer S, Oberson A, Berger L, Berset E, Hermann L, Frossard E (2014) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33p labeling techniques. Plant Soil 377(1–2):439–456. doi:10.1007/s11104-013-1968-6 CrossRefGoogle Scholar
  25. O’Connor G A, Sarkar D, Brinton S R, Elliott H A, Martin F G (2004) Phytoavailability of biosolids phosphorus. J Environ Qual 33(2):703. doi:10.2134/jeq2004.7030 CrossRefPubMedGoogle Scholar
  26. Qian T T, Jiang H (2014) Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustain Chem Eng 2(6):1411–1419. doi:10.1021/sc400476j CrossRefGoogle Scholar
  27. Richardson A E, Lynch J P, Ryan P R, Delhaize E, Smith F A, Smith S E, Harvey P R, Ryan M H, Veneklaas E J, Lambers H, Oberson A, Culvenor R A, Simpson R J (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349 (1–2):121–156. doi:10.1007/s11104-011-0950-4 CrossRefGoogle Scholar
  28. Römer W, Schilling G (1986) Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant Soil 91(2):221–229. doi:10.1007/BF02181789 CrossRefGoogle Scholar
  29. Saggar S, Hedley M J, White R E (1992) Development and evaluation of an improved soil test for phosphorus: 1. The influence of phosphorus fertilizer solubility and soil properties on the extractability of soil P. Fertil Res 33(1):81–91. doi:10.1007/BF01058012 CrossRefGoogle Scholar
  30. Scholz R W, Wellmer F W (2013) Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? Glob Environ Chang 23(1):11–27. doi:10.1016/j.gloenvcha.2012.10.013 CrossRefGoogle Scholar
  31. Singh B, Macdonald L M, Kookana R S, van Zwieten L, Butler G, Joseph S, Weatherley A, Kaudal B B, Regan A, Cattle J, Dijkstra F, Boersma M, Kimber S, Keith A, Esfandbod M (2014) Opportunities and constraints for biochar technology in Australian agriculture: looking beyond carbon sequestration. Soil Res 52(8):739–750Google Scholar
  32. Six L, Smolders E, Merckx R (2014) Testing phosphorus availability for maize with DGT in weathered soils amended with organic materials. Plant Soil 376(1–2):177–192. doi:10.1007/s11104-013-1947-y CrossRefGoogle Scholar
  33. Smith S R, Triner N G, Knight J J (2002) Phosphorus release and fertiliser value of enhanced-treated and nutrient-removal biosolids. Water Environ J 16(2):127–134. doi:10.1111/j.1747-6593.2002.tb00383.x CrossRefGoogle Scholar
  34. Thomsen T P, Ravenni G, Holm J K, Ahrenfeldt J, Hauggaard-Nielsen H, Henriksen U B (2015) Screening of various low-grade biomass materials for low temperature gasification: method development and application. Biomass Bioenergy 79:128–144. doi:10.1016/j.biombioe.2014.12.019 CrossRefGoogle Scholar
  35. Thomsen TP, Sarossy Z, Ahrenfeldt J, Henriksen UB, Frandsen FJ, Müller-Stover DS (2017a) Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge. J Environ Manage 198:308–318Google Scholar
  36. Thomsen TP, Hauggaard-Nielsen H, Gøbel B, Stoholm P, Ahrenfeldt J, Henriksen UB, Müller-Stöver DS (2017b) Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer Waste Management. In press. doi:10.1016/j.wasman.2017.04.043
  37. Viader RP, Jensen PE, Ottosen LM, Thomsen TP, Ahrenfeldt J, Hauggaard-Nielsen H (2016) Comparison of phosphorus recovery from incineration and gasification sewage sludge ash. In: 2nd IWA conference on holistic sludge management (HSM2016)Google Scholar
  38. Wang T, Camps-Arbestain M, Hedley M, Bishop P (2012) Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 357(1–2):173–187. doi:10.1007/s11104-012-1131-9 Google Scholar
  39. Wang T, Camps-Arbestain M, Hedley M (2014) The fate of phosphorus of ash-rich biochars in a soil-plant system. Plant Soil 375(1–2):61–74CrossRefGoogle Scholar
  40. Wilfert P, Kumar P S, Korving L, Witkamp G J, van Loosdrecht M C M (2015) The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: a review. Environ Sci Technol 49(16):9400–9414. doi:10.1021/acs.est.5b00150
  41. Zhao L, Cao X, Wang Q, Yang F, Xu S (2013) Mineral constituents profile of biochar derived from diversified waste biomasses: implications for agricultural applications. J Environ Qual 42 (2):545. doi:10.2134/jeq2012.0232 CrossRefPubMedGoogle Scholar
  42. Zheng H, Wang Z, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing B (2013) Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour Technol 130:463–471. doi:10.1016/j.biortech.2012.12.044
  43. Zwetsloot M J, Lehmann J, Solomon D (2015) Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J Sci Food Agric 95(2):281–288. doi:10.1002/jsfa.6716 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Waite Research Institute and School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia
  2. 2.Department of Plant and Environmental Sciences, Plant and Soil ScienceUniversity of CopenhagenFrederiksbergDenmark
  3. 3.CSIRO Agriculture and FoodGlen OsmondAustralia
  4. 4.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkRoskildeDenmark

Personalised recommendations