Plant and Soil

, Volume 417, Issue 1–2, pp 523–533 | Cite as

Soil type more than precipitation determines fine-root abundance in savannas of Kruger National Park, South Africa

  • Andrew Kulmatiski
  • Sydney R. C. Sprouse
  • Karen H. Beard
Regular Article

Abstract

Aims

Our aim was to examine how soil type and precipitation affect fine-root abundance in savanna ecosystems across Kruger National Park (KNP), South Africa.

Methods

Fine-root distributions were measured in four sites that represent the natural factorial combination of soil types (basalt-derived clay or granite-derived sand) and precipitation regimes [wet (~750 mm mean annual precipitation) or dry (~500 mm mean annual precipitation)] that occur in KNP. Root area and biomass (at soil depths of 0–75 cm) were estimated from measurements of root number, length and width in images from minirhizotron tubes at each site. Measurements were made during one mid-season sampling during three subsequent years.

Results

Fine-root area was more than twice as large in clay (2.3 ± 0.0 mm2 cm−2) than sand (0.8 ± 0.3 mm2 cm−2) sites but did not differ between wet and dry sites. Root number, length and width, used to derive area, showed similar patterns to fine-root area. Fine-root biomass estimated from these values was 5.5 ± 0.6 Mg ha−1 in clay sites and 2.2 ± 0.9 Mg ha−1 in sand sites.

Conclusions

Across the four sites, a change from sand to clay soils had a greater effect on fine-root abundance and distributions than a 50% increase in precipitation from dry to wet sites. Results highlight the importance of soil properties on root dynamics and carbon pools in the region.

Keywords

Belowground biomass Grass Minirhizotron Rainfall Root Savanna Tree 

Abbreviations

(MAP)

Mean annual precipitation

(KNP)

Kruger National Park

Notes

Acknowledgements

We thank the Andrew Mellon Foundation for financial support, South African National Parks for allowing us to do this research (project registration number 213896412). Field managers: S. Doucette-Riis, M. Cooper, M. Mazzacavallo, M. Keretetsi, S. Heath and L. Hierl. Field/laboratory assistants: W. Sibuye, R. Mashele, and V. Sibuye. Statistical advice: S. Durham and A. Tredennick. Experiments complied with the present laws of the Republic of South Africa. This research was supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 8958.

Supplementary material

11104_2017_3277_MOESM1_ESM.docx (30 kb)
Online Resource 1 (DOCX 30 kb)
11104_2017_3277_MOESM2_ESM.docx (51 kb)
Online Resource 2 (DOCX 50 kb)

References

  1. Archibald S, Scholes R (2007) Leaf green-up in a semi-arid African savanna–separating tree and grass responses to environmental cues. J Veg Sci 18:583–594Google Scholar
  2. Berry RS, Kulmatiski A (2017) A savanna response to precipitation intensity. PLoS One 12:e0175402. doi: 10.1371/journal.pone.0175402 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bond WJ (2008) What limits trees in C4 grasslands and savannas? Annu Rev Ecol Evol Syst:641–659. doi: 10.1146/annurev.ecolsys.39.110707.173411
  4. Bond WJ (2010) Do nutrient-poor soils inhibit development of forests? A nutrient stock analysis. Plant Soil 334:47–60. doi: 10.1007/s11104-010-0440-0 CrossRefGoogle Scholar
  5. Bradford JB, Lauenroth WK, Burke IC, Paruelo JM (2006) The influence of climate, soils, weather, and land use on primary production and biomass seasonality in the US Great Plains. Ecosystems 9:934–950. doi: 10.1007/s10021-004-0164-1 CrossRefGoogle Scholar
  6. Bréda N, Granier A, Barataud F, Moyne C (1995) Soil water dynamics in an oak stand. Plant Soil 172:17–27CrossRefGoogle Scholar
  7. Buitenwerf R, Kulmatiski A, Higgins SI (2014) Soil water retention curves for the major soil types of the Kruger National Park. Koedoe 56. doi: 10.4102/koedoe.v56i1.1228
  8. Burnham KP, Anderson D (2003) Model selection and multi-model inference: a practical information-theoretic approch. Springer, New YorkGoogle Scholar
  9. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world's upland forests. Oecologia 111: 1–11. doi: 10.1007/s004420050201.
  10. Colgan MS, Asner GP, Levick SR, Martin RE, Chadwick O (2012) Topo-edaphic controls over woody plant biomass in south African savannas. Biogeosciences 9:1809–1821. doi: 10.5194/bg-9-1809-2012 CrossRefGoogle Scholar
  11. Craine JM, Morrow C, Stock WD (2008) Nutrient concentration ratios and co-limitation in south African grasslands. New Phytol 179:829–836. doi: 10.1111/j.1469-8137.2008.02513.x CrossRefPubMedGoogle Scholar
  12. February EC, Higgins SI (2010) The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. S Afr J Bot 76:517–523. doi: 10.1016/j.sajb.2010.04.001 CrossRefGoogle Scholar
  13. February EC, Higgins SI, Bond WJ, Swemmer L (2013) Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94:1155–1164. doi: 10.1890/12-0540.1 CrossRefPubMedGoogle Scholar
  14. Fransen B, de Kroon H, Berendse F (1998) Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability. Oecologia 115:351–358. doi: 10.1007/s004420050527 CrossRefPubMedGoogle Scholar
  15. Franzen D (2001) The role of species richness for recruitment in a seminatural grassland. Oikos 95:409–415CrossRefGoogle Scholar
  16. Grace J, José JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400. doi: 10.1111/j.1365-2699.2005.01448.x CrossRefGoogle Scholar
  17. Groen TA, van Langevelde F, van de Vijver CADM, Govender N, Prins HHT (2008) Soil clay content and fire frequency affect clustering in trees in south African savannas. J Trop Ecol 24:269–279. doi: 10.1017/s0266467408004872 CrossRefGoogle Scholar
  18. Haverd V, Smith B, Raupach M, Briggs P, Nieradzik L, Beringer J, Hutley L, Trudinger C, Cleverly J (2015) Coupling carbon allocation with leaf and root phenology predicts tree-grass partitioning along a savanna rainfall gradient. Biogeosci Discuss 13: 761–779. doi: 10.5194/bg-13-761-2016
  19. Hendrick RL, Pregitzer KS (1992) The demography of fine roots in a northern hardwood forest. Ecology 73:1094–1104CrossRefGoogle Scholar
  20. Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo DL (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. doi: 10.1111/j.1365-2745.2005.01067.x CrossRefGoogle Scholar
  21. Hook PB, Burke IC (2000) Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology 81:2686–2703. doi: 10.1890/0012-9658(2000)081[2686:biaslc]2.0.co;2 CrossRefGoogle Scholar
  22. Hook PB, Burke IC, Lauenroth WK (1991) Heterogeneity of soil and plant N and C associated with individual plants and openings in north American shortgrass steppe. Plant Soil 138:247–256CrossRefGoogle Scholar
  23. Hopcraft JGC, Olff H, Sinclair A (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol Evol 25:119–128CrossRefPubMedGoogle Scholar
  24. Jackson RB, Mooney HA, Schulze E-D (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci 94:7362–7366CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488. doi: 10.1016/S1360-1385(00)01766-0 CrossRefPubMedGoogle Scholar
  26. Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626. doi: 10.1016/j.tree.2009.08.001 CrossRefPubMedGoogle Scholar
  27. Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289. doi: 10.1016/S0098-8472(01)00077-6 CrossRefPubMedGoogle Scholar
  28. Joslin JD, Wolfe MH (1999) Disturbances during minirhizotron installation can affect root observation data. Soil Sci Soc Am J 63:218–221. doi: 10.2136/sssaj 1999.03615995006300010031x CrossRefGoogle Scholar
  29. Koerner SE, Collins SL (2014) Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. Ecology 95:98–109. doi: 10.1890/13-0526.1 CrossRefPubMedGoogle Scholar
  30. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:GB2015. doi: 10.1029/2003GB002199 CrossRefGoogle Scholar
  31. Kulmatiski A, Beard KH (2004) Reducing sampler error in soil research. Soil Biol Biochem 36:383–385. doi: 10.1016/j.soilbio.2003.10.004 CrossRefGoogle Scholar
  32. Kulmatiski A, Beard KH (2013a) Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. Oecologia 171:25–37. doi: 10.1007/s00442-012-2390-0 CrossRefPubMedGoogle Scholar
  33. Kulmatiski A, Beard KH (2013b) Woody plant encroachment facilitated by increased precipitation intensity. Nature Clim Change 3:833–837. doi: 10.1038/nclimate1904 http://www.nature.com/nclimate/journal/v3/n9/abs/nclimate1904.html#supplementary-information CrossRefGoogle Scholar
  34. Kulmatiski A, Beard KH, Verweij RJT, February EC (2010) A depth-controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytol 188:199–209. doi: 10.1111/j.1469-8137.2010.03338.x CrossRefPubMedGoogle Scholar
  35. Kulmatiski A, Adler PB, Stark JM, Tredennick AT (2017) Water and nitrogen uptake are better associated with resource availability than root biomass. Ecosphere 8:e01738. doi: 10.1002/ecs2.1738 CrossRefGoogle Scholar
  36. Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56. doi: 10.1023/b:plso.0000016508.20173.80 CrossRefGoogle Scholar
  37. Maire V, Gross N, Da Silveira PL, Picon-Cochard C, Soussana J-F (2009) Trade-off between root nitrogen acquisition and shoot nitrogen utilization across 13 co-occurring pasture grass species. Funct Ecol 23:668–679. doi: 10.1111/j.1365-2435. 2009.01557.x CrossRefGoogle Scholar
  38. Mazzacavallo MG, Kulmatiski A (2015) Modelling water uptake provides a new perspective on grass and tree coexistence. PLoS One 10:e0144300. doi: 10.1371/journal.pone.0144300 CrossRefPubMedPubMedCentralGoogle Scholar
  39. McNaughton SJ, Banyikwa FF, McNaughton MM (1998) Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587–592. doi: 10.1890/0012-9658(1998)070587:rbapia]2.0.co;2
  40. Metcalfe D, Williams M, Aragão L, Da Costa A, De Almeida S, Braga A, Gonçalves P, De Athaydes J, Junior S, Malhi Y (2007) A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurement accuracy. New Phytol 174:697–703. doi: 10.1111/j.1469-8137.2007.02032.x CrossRefPubMedGoogle Scholar
  41. Mills AJ, Fey MV (2005) Interactive response of herbivores, soils and vegetation to annual burning in a south African savanna. Austral Ecol 30:435–444. doi: 10.1111/j.1442-9993.2005.01487.x CrossRefGoogle Scholar
  42. Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96. doi: 10.1111/j.1365-2486.2005.001043.x CrossRefGoogle Scholar
  43. Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario JI (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem Cycles 7:785–809. doi: 10.1029/93gb02042 CrossRefGoogle Scholar
  44. Picon-Cochard C, Pilon R, Tarroux E, Pagès L, Robertson J, Dawson L (2012) Effect of species, root branching order and season on the root traits of 13 perennial grass species. Plant Soil 353:47–57. doi: 10.1007/s11104-011-1007-4 CrossRefGoogle Scholar
  45. Priyadarshini KVR, de Bie S, Heitkönig IMA, Woodborne S, Gort G, Kirkman KP, Prins HHT (2016) Competition with trees does not influence root characteristics of perennial grasses in semi-arid and arid savannas in South Africa. J Arid Environ 124:270–277. doi: 10.1016/j.jaridenv.2015.09.006 CrossRefGoogle Scholar
  46. Rutherford MC (1993) Empiricism and the prediction of primary production at the mesoscale: a savanna example. Ecol Model 67:129–146. doi: 10.1016/0304-3800(93)90002-A CrossRefGoogle Scholar
  47. Rytter R-M, Rytter L (2012) Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil. Plant Soil 350:205–220. doi: 10.1007/s11104-011-0896-6 CrossRefGoogle Scholar
  48. Sankaran M (2008) Woody cover in African savannas: the role of resources, fire and herbivory. Glob Ecol Biogeogr 17:236–245. doi: 10.1111/j.1466-8238.2007.00360.x CrossRefGoogle Scholar
  49. Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438:846–849CrossRefPubMedGoogle Scholar
  50. Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, Cambridge, Massachusetts, USAGoogle Scholar
  51. Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil water characteristics from texture. Soil Sci Soc Am J 50:1031–1036CrossRefGoogle Scholar
  52. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494. doi: 10.1046/j.1365-2745.2002.00682.x CrossRefGoogle Scholar
  53. Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140. doi: 10.1016/j.geoderma.2004.11.018 CrossRefGoogle Scholar
  54. Scholes RJ (1988) Response of three semi-arid savannas on contrasting soils to the removal of the woody component. University of Witwatersand, JohannesburgGoogle Scholar
  55. Scholes RJ, Bond WJ, Eckhardt HC (2003) Vegetation dynamics in the Kruger ecosystem. The Kruger Experience. Island Press, Washington, USAGoogle Scholar
  56. Scholtz R, Kiker GA, Smit IPJ, Venter FJ (2014) Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa. Ecosphere 5:1–12. doi: 10.1890/es14-00034.1 CrossRefGoogle Scholar
  57. Smit IPJ (2011) Resources driving landscape-scale distribution patterns of grazers in an African savanna. Ecography 34:67–74. doi: 10.1111/j.1600-0587.2010.06029.x CrossRefGoogle Scholar
  58. Smit GN, Rethman NFG (1998) Root biomass, depth distribution and relations with leaf biomass of Colophospermum mopane. S Afr J Bot 64: 38-43. doi:doi:10.1016/S0254-6299(15)30825-5.Google Scholar
  59. Smit IPJ, Smit CF, Govender N, Mvd L, MacFadyen S (2013) Rainfall, geology and landscape position generate large-scale spatiotemporal fire pattern heterogeneity in an African savanna. Ecography 36:447–459. doi: 10.1111/j.1600-0587.2012.07555.x CrossRefGoogle Scholar
  60. Smithwick EAH, Lucash MS, McCormack ML, Sivandran G (2014) Improving the representation of roots in terrestrial models. Ecol Model 291:193–204. doi: 10.1016/j.ecolmodel.2014.07.023 CrossRefGoogle Scholar
  61. Snyman HA (2005) Rangeland degradation in a semi-arid South Africa—I: influence on seasonal root distribution, root/shoot ratios and water-use efficiency. J Arid Environ 60:457–481. doi: 10.1016/j.jaridenv.2004.06.006 CrossRefGoogle Scholar
  62. Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232CrossRefPubMedGoogle Scholar
  63. Träger S, Wilson SD (2016) Root heterogeneity along an arctic elevational gradient: the importance of resolution. Funct Ecol. doi: 10.1111/1365-2435.12721
  64. Venter F (1986) Soil patterns associated with the major geological units of the Kruger National Park. Koedoe 29:125–138Google Scholar
  65. Venter FJ, Scholes RJ, Eckhardt HC (2003) The abiotic template and its associated vegetation pattern. In: du Toit J, Rogers K, Biggs H (eds) The Kruger experience. Island Press, Washington D.CGoogle Scholar
  66. Walter H (1971) Ecology of tropical and subtropical vegetation. Oliver and Boyd, EdinburghGoogle Scholar
  67. Warren CP, Kulmatiski A, Beard KH (2015) A combined tracer/evapotranspiration model approach estimates plant water uptake in native and non-native shrub-steppe communities. J Arid Environ 121:67–78. doi: 10.1016/j.jaridenv.2015.06.001 CrossRefGoogle Scholar
  68. Wells CG, Birchfield S (2008) Rootfly: software for minirhizotron image analysis. Clemson University. Clemson, South Carolina, USAGoogle Scholar
  69. Weltzin JF, McPherson GR (2000) Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology 81:1902–1913. doi: 10.1890/0012-9658(2000)081[1902:ioprfs]2.0.co;2 CrossRefGoogle Scholar
  70. Wessels KJ, Prince SD, Zambatis N, MacFadyen S, Frost PE, Van Zyl D (2006) Relationship between herbaceous biomass and 1-km2 advanced very high resolution radiometer (AVHRR) NDVI in Kruger National Park, South Africa. Int J Remote Sens 27:951–973. doi: 10.1080/01431160500169098 CrossRefGoogle Scholar
  71. Yuan Z, Chen HY (2012) Indirect methods produce higher estimates of fine root production and turnover rates than direct methods. PLoS One 7:e48989. doi: 10.1371/journal.pone.0048989 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zeppel M, Macinnis-Ng C, Palmer A, Taylor D, Whitley R, Fuentes S, Yunusa I, Williams M, Eamus D (2008) An analysis of the sensitivity of sap flux to soil and plant variables assessed for an Australian woodland using a soil–plant–atmosphere model. Funct Plant Biol 35:509–520. doi: 10.1071/FP0811 CrossRefGoogle Scholar
  73. Zhou X, Talley M, Luo Y (2009) Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA. Ecosystems 12:1369–1380CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUSA

Personalised recommendations