Plant and Soil

, Volume 417, Issue 1–2, pp 317–329 | Cite as

Do soil and climate properties drive biogeography of the Australian proteaceae?

  • Emily Prentice
  • Nunzio Knerr
  • Alexander N. Schmidt-Lebuhn
  • Carlos E. González-Orozco
  • Elisabeth N. Bui
  • Shawn Laffan
  • Joseph T. Miller
Regular Article



The Proteaceae are a diverse family of approximately 80 genera and 1700 species with a mostly southern-hemisphere distribution. While distributional patterns of various subsets of the Proteaceae have been studied, no quantitative continental-scale study of species-level spatial biodiversity patterns of the Australian Proteaceae has been conducted. The aim of this study is to identify and examine patterns of distribution, diversity and endemism for the Proteaceae (at family, genera and species levels) of continental Australia and to investigate the environmental drivers for the observed patterns.


Using 151,899 herbarium records for 1179 Australian Proteaceae species, we investigate taxon richness, endemism, and compositional turnover along with climatic and soil correlates.


Species richness and endemism was highest in the Southwest phytogeographical region, as well as the Atherton and Southeastern subregions. Genus richness was highest in the Northeastern and Atherton subregions. Highest species turnover occured in the Southwestern region and the Southeastern subregion while lowest species turnover occured in the Northern, Northern Desert and Eremaean regions. Over the entire continent, soil geochemistry and climate explain 37% of the variation in species turnover; however, in areas of high species richness, they account for >75% of the variation in species turnover.


These results suggest that the biogeographic patterns of the Proteaceae are impacted by climate and soils, where Proteaceae specialization has filled novel environmental niches associated with low nutrient and low water availability soils, particularly in southwestern Australia.


Species turnover Phytogeography Proteaceae Soil geochemistry 



This work was part of EP’s participation in a Summer Student program at CSIRO which was sponsored by the Grains Research Development Corporation (GRDC) and Bayer CropScience. This manuscript includes work done by JTM while serving at the National Science Foundation. The views expressed in this paper do not necessarily reflect those of the National Science Foundation or the United States Government.

Supplementary material

11104_2017_3261_MOESM1_ESM.pdf (1.1 mb)
Supplementary Figure 1 Diversity metrics (SR left and CWE right) for Adenanthos, Conospermum, Isopogon, Petrophile, Synaphea and Macadamia mapped using 100x100km grid cells. (PDF 1172 kb)
11104_2017_3261_MOESM2_ESM.pdf (349 kb)
Supplementary Figure 2 Phytogeographic regions of Hakea/Grevilia, Persoonia and Banksia species based on WPGMA clustering of Simpson’s ßsim. The color of the map regions correspond to color regions on the dendrograms. (PDF 349 kb)
11104_2017_3261_MOESM3_ESM.docx (93 kb)
Supplementary Table 1 (DOCX 92 kb)
11104_2017_3261_MOESM4_ESM.docx (125 kb)
Supplementary Table 2 (DOCX 124 kb)


  1. Beard JS, Chapman AR, Gioia P (2000) Species richness and endemism in the western Australian flora. J Biogeogr 27:1257–1268CrossRefGoogle Scholar
  2. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, NY, 306 ppCrossRefGoogle Scholar
  3. Bui EN, Thornhill AH, Miller JT (2014) Salt- and alkaline-tolerance are linked in Acacia. Biol Lett 10:20140278CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bui EN, Thornhill AH, González-Orozco CE, Miller JT (2017) Climate, and geochemistry as drivers of eucalypt diversification in Australia. Geobiology. doi: 10.1111/gbi.12235 PubMedGoogle Scholar
  5. Burbidge N (1960) The phytogeography of the Australian region. Austral J Bot 8:75–211CrossRefGoogle Scholar
  6. Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17:4398–4417. doi: 10.1111/j.1365-294X.2008.03899.x CrossRefPubMedGoogle Scholar
  7. Cadotte MW, Davies JT (2010) Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers Distrib 16:376–385CrossRefGoogle Scholar
  8. Cardillo M, Pratt R (2013) Evolution of a hotspot genus: geographic variation in speciation and extinction rates in Banksia (Proteaceae). BMC Evol Biol 13:1–12CrossRefGoogle Scholar
  9. CHAH –Council of Heads of Australasian Herbaria (2013a) Australia's virtual herbarium, (October 2013). Australian Plant Census (
  10. CHAH –Council of Heads of Australasian Herbaria (2013b) Australian Plant Census (
  11. Cox, CB, Moore PD (1976) Biogeography: an ecological and evolutionary approach, John Wiley & SonsGoogle Scholar
  12. Crisp MD, Laffan S, Linder HP, Monro A (2001) Endemism in the Australian flora. J Biogeogr 28(2):183–198CrossRefGoogle Scholar
  13. Crisp M, Cook L, Steane D (2004) Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philos Trans R Soc Lond 359:551–1571CrossRefGoogle Scholar
  14. Dapporto L, Ramazzotti M, Fattorini S, Talavera G, Vila R, Dennis RLH (2013) Recluster: an unbiased clustering procedure for beta-diversity turnover. Ecography 36:1070–1075CrossRefGoogle Scholar
  15. de Caritat P, Cooper M (2011) National Geochemical Survey of Australia: the geochemical Atlas of Australia. Geoscience Australia, Recoerd 2011/20 (2 Volumes), 557 pp.Google Scholar
  16. Dray S, Legendre P, Blanchet FG (2007) Packfor: forward selection with permutation. R package version 0.0–9.Google Scholar
  17. Ebach MC, Humphries CJ, Williams DM (2003) Phylogenetic biogeography deconstructed. J Biogeogr 30:1285–1296CrossRefGoogle Scholar
  18. Ebach MC, Gill AC, Kwan A, Ahyong ST, Murphy DJ, Cassis G (2013) Towards an Australian Bioregionalisation Atlas: a provisional area taxonomy of Australia’s biogeographical regions. Zootaxa 3619:315–342. doi: 10.11646/zootaxa.3619.3.4 CrossRefPubMedGoogle Scholar
  19. Ebach MC, Murphy DJ, González-Orozco CE, Miller JT (2015) A revised area taxonomy of phytogeographical regions within the Australian Bioregionalisation Atlas. Phytotaxa. doi: 10.11646/phytotaxa.00.0.0 Google Scholar
  20. El-ahmir SM, Lim SL, Lamont BB, He T (2015) Seed size, fecundity and Postfire regeneration strategy are interdependent in Hakea. PLoS One 10:e0129027. doi: 10.1371/journal.pone.0129027 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Flora of Australia (1995) Elaeagnaceae, Proteaceae 1, volume16, Flora of Australia Series CSIRO PUBLISHING / Australian Biological Resources Study (ABRS). Australia, MelbourneGoogle Scholar
  22. Flora of Australia (1999) Proteaceae 3 Hakea to dryandra,17B, Flora of Australia Series CSIRO PUBLISHING / Australian Biological Resources Study (ABRS). Australia, MelbourneGoogle Scholar
  23. Flora of Australia (2000) Proteaceae 2: Grevillea volume17A, Flora of Australia Series CSIRO PUBLISHING / Australian Biological Resources Study (ABRS). Australia, MelbourneGoogle Scholar
  24. Gibson N, Meissner R, Markey AS, Thompson WA (2012) Patterns of plant diversity in ironstone ranges in arid south western Australia. J Arid Environ 77:25–31CrossRefGoogle Scholar
  25. González-Orozco CE, Laffan SW, Miller JT (2011) Spatial distribution of species richness and endemism of the genus Acacia in Australia. Aus J Bot 59:600–608CrossRefGoogle Scholar
  26. González-Orozco CE, Laffan SW, Knerr N, Miller JT (2013) A biogeographical regionalization of Australian Acacia species. J Biogeogr 40:2156–2166CrossRefGoogle Scholar
  27. González-Orozco CE, Thornhill AH, Knerr N, Laffan SW, Miller JM (2014a) Biogeographical regions and phytogeography of the eucalypts. Divers Distrib 20:46–58CrossRefGoogle Scholar
  28. González-Orozco CE, Ebach MC, Laffan SW, Thornhill AH, Knerr N, Schmidt-Lebuhn A, Cargill CC, Clements M, Nagalingum N, Mishler BD, Miller JT (2014b) Quantifying phytogeographical regions of Australia using geospatial turnover in species composition. PLoS One 9:e92558CrossRefPubMedPubMedCentralGoogle Scholar
  29. He T, Lamont BB, Downes KS (2011) Banksia born to burn. New Phytol 191:184–196CrossRefPubMedGoogle Scholar
  30. Hill RS (1998) Fossil evidence for the onset of xeromorphy and scleromorphy in Australian Proteaceae. Aust Sys Bot 11:391–400CrossRefGoogle Scholar
  31. Hopper SD (1979) Biogeographical aspects of speciation in the southwest Australian Flora. Annu Rev Ecol Syst 10:399–422CrossRefGoogle Scholar
  32. Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86CrossRefGoogle Scholar
  33. Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annu Rev Ecol Evol Syst 35:623–650CrossRefGoogle Scholar
  34. Johnson LAS, Briggs BG (1975) On the Proteaceae – the evolution of a southern family. Bot J Linn Soc 70:83–182CrossRefGoogle Scholar
  35. Jordan GJ, Dillon RA, Weston PH (2005) Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. Amer J Bot 92:789–796CrossRefGoogle Scholar
  36. Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ (2008) The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Amer J Bot 95:521–530CrossRefGoogle Scholar
  37. Kadmon R, Farber O, Danin A (2003) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413CrossRefGoogle Scholar
  38. Keeley JE, Bond WJ, Bradstock RA, Pausus JG, Rundel PW (2012) Fire in Mediterranean Ecosystems: ecology, evolution and management. Cambridge University Press, Cambridge, p. 515Google Scholar
  39. Laffan SW, Crisp MD (2003) Assessing endemism at multiple spatial scales, with an example from the Australian vascular flora. J Biogeogr 30:511–520CrossRefGoogle Scholar
  40. Laffan SW, Lubarsky E, Rosauer DF (2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33:643–647CrossRefGoogle Scholar
  41. Laliberté E, Grace JB, Huston MA, Lambers H, Teste FP, Turner BL, Wardle DA (2013) How does pedogenesis drive plant diversity? Trends Ecol Evol 28:331–340CrossRefPubMedGoogle Scholar
  42. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lambers H, Brundrett M, Raven J, Hopper S (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31CrossRefGoogle Scholar
  44. Lambers H, Clode PL, Hawkins H-J, Laliberté E, Oliveira RS, Reddell P, Shane MW, Stitt M, Weston P (2015) Metabolic adaptations of the non-mycotrophic proteaceae to soils with low phosphorus. Ann Plant Rev, Phosphorus Metab Plant 48:289Google Scholar
  45. Lamont BB (1993) Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia? Plant Soil 155:269–272CrossRefGoogle Scholar
  46. Lamont B, Connell SW (1996) Biogeography of Banksia in southwestern Australia. J Biogeogr 23:295–309CrossRefGoogle Scholar
  47. Lamont B, Markey A (1995) Biogeography of fire-killed and Resprouting Banksia species in South-Western Australia. Aust J Bot 43:283–303CrossRefGoogle Scholar
  48. Legendre P (2008) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J Plant Ecol 1:3–8CrossRefGoogle Scholar
  49. Mast AR, Givnish TJ (2002) Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. Amer J Bot 89:1311–1323CrossRefGoogle Scholar
  50. Mast AR, Milton EF, Jones EH, Barker RM, Barker WR, Weston PH (2012) Time-calibrated phylogeny of the woody Australian genus Hakea (Proteaceae) supports multiple origins of insect-pollination among bird-pollinated ancestors. Amer J Bot 99:472–487CrossRefGoogle Scholar
  51. McGowran B, Holdgate GR, Li Q, Gallagher SJ (2004) Cenozoic stratigraphic succession in southeastern Australia. Aust J Earth Sci 51:459–496. doi: 10.1111/j.1400-0952.2004.01078.x CrossRefGoogle Scholar
  52. Myerscough PJ, Whelan RJ, Bradstock RA (2000) Ecology of Proteaceae with special reference to the Sydney region. Cunninghamia 6:951Google Scholar
  53. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version 2.0–10. package=vegan. Accessed 17 May 2013
  54. Onstein RE, Jordan GJ, Sauquet H, Weston PH, Bouchenak-Khelladi Y, Carpenter RJ, Linder HP (2016) Evolutionary radiations of Proteaceae are triggered by the interaction between traits and climates in open habitats. Glob Ecol Biogeog doi. doi: 10.1111/geb.12481 Google Scholar
  55. R Development Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria.
  56. Ribeiro PJ, Diggle PJ (2001) geoR: A package for geostatistical analysis. R-News Vol 1, No 2 Available at:
  57. Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18:4061–4072CrossRefPubMedGoogle Scholar
  58. Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ, Mast AR, Savolainen V (2009) Contrasted patterns of hyperdiversification in Mediterranean hotspots. PNAS 06:221–225CrossRefGoogle Scholar
  59. Sniderman JMK, Jordan GJ, Cowling RM (2013) Fossil evidence for a hyperdiverse sclerophyll flora under a non-Mediterranean-type climate. PNAS 110:3423–3428CrossRefPubMedPubMedCentralGoogle Scholar
  60. Stevenson L, González-Orozco CE, Knerr N, Cargill C, Miller JT (2012) Spatial distribution and analysis of species richness and endemism of liverworts, hornworts and mosses in Australia. J Bryol 34:101–107CrossRefGoogle Scholar
  61. Thiele K, Ladiges P (1996) A cladistic analysis of Banksia (Proteaceae). Aust Sys Bot 9:661–733CrossRefGoogle Scholar
  62. Thornhill AH, Mishler BD, Knerr NJ, González-Orozco CE, Costion CM, Crayn DM, Laffan SW, Miller JT (2016) Continental scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J Biogeogr 43:2085–2309. doi: 10.1111/jbi.12797 CrossRefGoogle Scholar
  63. Venterink HO (2011) Does phosphorus limitation promote species-rich plant communities? Plant Soil 345:1–9CrossRefGoogle Scholar
  64. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and Forest decline in contrasting long-term Chronosequences. Science 305:509–513CrossRefPubMedGoogle Scholar
  65. Williams KJ, Ferrier S, Rosauer D, Yeates D, Manion G, Harwood T, Stein J, Faith DP, Laity T Whalen A (2010a) Harnessing continent-wide biodiversity datasets for Prioritising National Conservation Investment: 1. Main Report. CSIRO Ecosystem Sciences, CanberraGoogle Scholar
  66. Williams KJ, Ferrier S, Rosauer D, Yeates D, Manion G, Harwood T, Stein J, Faith DP, Laity T, Whalen A (2010b) Harnessing continent-wide biodiversity datasets for Prioritising National Conservation Investment: 2. Appendices. CSIRO Ecosystem Sciences, CanberraGoogle Scholar
  67. Zúñiga-Feest A, Delgado M, Bustos A (2014) Chapter 16: Cluster roots. In: Morte A, Varma A (eds) Root engineering: basic and applied concepts. Springer, BerlinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA)  2017

Authors and Affiliations

  • Emily Prentice
    • 1
  • Nunzio Knerr
    • 1
  • Alexander N. Schmidt-Lebuhn
    • 1
  • Carlos E. González-Orozco
    • 2
  • Elisabeth N. Bui
    • 3
  • Shawn Laffan
    • 4
  • Joseph T. Miller
    • 5
  1. 1.National Research Collections AustraliaCSIRO National Facilities and CollectionsCanberraAustralia
  2. 2.Corporación Colombiana de Investigación AgropecuariaCorpoicaPuerto LópezColombia
  3. 3.CSIRO Land and WaterCanberraAustralia
  4. 4.Centre for Ecosystem Science, School of Biological Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
  5. 5.Office of International Science and EngineeringNational Science FoundationVirginiaUSA

Personalised recommendations