Plant and Soil

, Volume 415, Issue 1–2, pp 435–448

Initial biochar effects on plant productivity derive from N fertilization

  • Simon Jeffery
  • Ilse Memelink
  • Edward Hodgson
  • Sian Jones
  • Tess F. J. van de Voorde
  • T. Martijn Bezemer
  • Liesje Mommer
  • Jan Willem van Groenigen
Regular Article


Background and aim

Biochar application to soil is widely claimed to increase plant productivity. However, the underlying mechanisms are still not conclusively described. Here, we aim to elucidate these mechanisms using stable isotope probing.


We conducted two experiments with uniquely double-labelled (15N and 13C) biochar and its feedstock (residue), applied separately at 15 Mg ha−1. Both experiments contained three treatments: biochar amendment (Biochar), unpyrolysed residue amendment (Residue) and a no addition control (Control). Experiment I was a 119 day pot experiment seeded with Lolium perenne. Experiment II was a 71 day incubation experiment without plants in which CO2 and N2O fluxes were measured.


Both Biochar and Residue significantly increased aboveground productivity compared to Control (140% and 160%, respectively). Initial N immobilisation was stimulated in Residue, whereas not in Biochar. 13C–CO2 analysis confirmed that biochar was significantly more recalcitrant than residue. 15N analysis showed that 2% and 0.3% of grass N was derived from the amended material in Residue and Biochar, respectively.


Our results suggest that biochar-induced yield increases derive from a combination of reduced N immobilization and a moderate N fertilization effect. Although in the short term biochar might offer benefits compared to residue incorporation, it is unlikely that biochar yield gains will be sustainable for the decades to centuries that biochar C can be expected to reside in soil.


Pyrolysis Organic amendment Stable isotopes C dynamics N immobilisation Greenhouse gases 


  1. Balota E, Colozzi-Filho A, Andrade D, Dick R (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:15–20. doi:10.1007/s00374-003-0590-9 CrossRefGoogle Scholar
  2. Bedard-Haughn A, van Groenigen JW, van Kessel C (2003) Tracing 15N through landscapes: potential uses and precautions. J Hydrol 272:175–190. doi:10.1016/S0022-1694(02)00263-9 CrossRefGoogle Scholar
  3. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917Google Scholar
  4. Boschker HTS (2004) Linking microbial community structure and functioning: Stable isotope (13C) labeling in combination with PLFA analysis. In: Kowalchuk GA, Head d BFJIM, Akkermans AD and van Elsas JD (ed) Molecular microbial ecology manual II. Kluwer, pp 1673–1688Google Scholar
  5. Boschker JT, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805. doi:10.1038/33900 CrossRefGoogle Scholar
  6. Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278. doi:10.1007/s002489900082 CrossRefGoogle Scholar
  7. Bromand S, Whalen J, Janzen HH, Schjoerring J, Ellert BH (2001) A pulse-labelling method to generate 13C- enriched plant materials. Plant Soil 235:253–257. doi:10.1023/A:1011922103323 CrossRefGoogle Scholar
  8. Case SDC, McNamara NP, Reay DS, Stott AW, Grant HK, Whitaker J (2015) Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol Biochem 81:178–185. doi:10.1016/j.soilbio.2014.11.012 CrossRefGoogle Scholar
  9. Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3:1732. doi:10.1038/srep01732 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16. doi:10.1016/j.agee.2013.10.009 CrossRefGoogle Scholar
  11. Clough TJ, Bertrama JE, Raya JL, Condron LM, O'Callaghan M, Sherlock RR, Wells NS (2010) Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci Soc Am J 74:852–860. doi:10.2136/sssaj2009.0185 CrossRefGoogle Scholar
  12. Clough T, Condron L, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293. doi:10.3390/agronomy3020275 CrossRefGoogle Scholar
  13. Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895. doi:10.1021/es050191b CrossRefPubMedGoogle Scholar
  14. Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113. doi:10.1890/06-1847.1 CrossRefPubMedGoogle Scholar
  15. Crombie K, Mašek O, Cross A, Sohi S (2015) Biochar – synergies and trade-offs between soil enhancing properties and C sequestration potential. GCB Bioenergy 7:1161–1175. doi:10.1111/gcbb.12213 CrossRefGoogle Scholar
  16. Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65. doi:10.1007/BF00384433 CrossRefGoogle Scholar
  17. Gurwick NP, Moore LA, Kelly C, Elias P (2013) A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS One 8:e75932. doi:10.1371/journal.pone.0075932 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hodgson EM et al (2011) Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour Technol 102:3411–3418. doi:10.1016/j.biortech.2010.10.017 CrossRefPubMedGoogle Scholar
  19. Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. doi:10.1016/j.agee.2011.08.015 CrossRefGoogle Scholar
  20. Jeffery S, Abalos D, Spokas K, Verheijen FGA (2015a) Biochar effects on crop yields. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation. Earthscan, London, pp 301–326Google Scholar
  21. Jeffery S, Bezemer TM, Cornelissen G, Kuyper TW, Lehmann J, Mommer L, Sohi SP, van de Voorde TFJ, Wardle DA, van Groenigen JW (2015b) The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy 7:1–13. doi:10.1111/gcbb.12132 CrossRefGoogle Scholar
  22. Karaosmanoǧlu F, Işıḡıgür-Ergüdenler A, Sever A (2000) Biochar from the straw-stalk of rapeseed plant. Energy Fuel 14:336–339. doi:10.1021/ef9901138 CrossRefGoogle Scholar
  23. Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. For Ecol Manag 185:263–273. doi:10.1016/S0378-1127(03)00164-6 CrossRefGoogle Scholar
  24. Lehmann J, Gaunt J and Rondon M 2006 Bio-char sequestration in terrestrial ecosystems – A Review. 11, 395–419 DOI:10.1007/s11027-005-9006-5
  25. Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373:583–594. doi:10.1007/s11104-013-1806-x CrossRefGoogle Scholar
  26. Maestrini B, Nannipieri P, Abiven S (2014) A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy 7:577–590. doi:10.1111/gcbb.12194 CrossRefGoogle Scholar
  27. Mia S, van Groenigen JW, van de Voorde TFJ, Oram NJ, Bezemer TM, Mommer L, Jeffery S (2014) Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric Ecosyst Environ 191:83–91. doi:10.1016/j.agee.2014.03.011 CrossRefGoogle Scholar
  28. Mukherjee A, Lal R (2014) The biochar dilemma. Soil Research 52:217–230. doi:10.1071/SR13359 CrossRefGoogle Scholar
  29. Nelissen V, Rütting T, Huygens D, Ruysschaert G, Boeckx P (2015) Temporal evolution of biochar's impact on soil nitrogen processes – a 15N tracing study. GCB Bioenergy 7:635–645. doi:10.1111/gcbb.12156 CrossRefGoogle Scholar
  30. Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–629. doi:10.1016/S0953-7562(09)80723-5 CrossRefGoogle Scholar
  31. Oram NJ, van de Voorde TFJ, Ouwehand GA, Bezemer TM, Mommer L, Jeffery S, Van Groenigen JW (2014) Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agric Ecosyst Environ 191:92–98. doi:10.1016/j.agee.2014.03.031 CrossRefGoogle Scholar
  32. Paul EA, Paustian KH, Elliott ET, Cole CV (1996) Soil organic matter in temperate Agroecosystems - long term experiments in North America. CRC Press, Taylor Francis Group, USAGoogle Scholar
  33. Prendergast-Miller MT, Duvall M, Sohi SP (2014) Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci 65:173–185. doi:10.1111/ejss.12079 CrossRefGoogle Scholar
  34. Sagrilo E, Jeffery S, Hoffland E, Kuyper TW (2015) Emission of CO2 from biochar-amended soils and implications for soil organic carbon. GCB Bioenergy 7:1294–1304. doi:10.1111/gcbb.12234 CrossRefGoogle Scholar
  35. Sánchez-García M, Roig A, Sanchez-Monedero MA, Cayuela ML (2014) Biochar increases soil N2O emissions produced by nitrification-mediated pathways. Front Environ Sci 2:25. doi:10.3389/fenvs.2014.00025 Google Scholar
  36. Shackley S, Sohi SP, Ibarrola R, Hammond J, Mašek O, Brownsort P, Cross A, Prendergast-Miller M, Haszeldine S (2012) Biochar, tool for climate change mitigation and soil management. In: Lenton T, Vaughan N (eds) Geoengineering responses to climate change. Springer, New York, pp 73–140Google Scholar
  37. Singla A, Iwasa H, Inubushi K (2014) Effect of biogas digested slurry based-biochar and digested liquid on N2O, CO2 flux and crop yield for three continuous cropping cycles of komatsuna (Brassica rapa var. perviridis). Biol Fertil Soils 50:1201–1209. doi:10.1007/s00374-014-0950-7 CrossRefGoogle Scholar
  38. Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989. doi:10.2134/jeq2011.0069 CrossRefPubMedGoogle Scholar
  39. Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855CrossRefGoogle Scholar
  40. Stiboka (1975) Stiboka Bodemkaart van Nederland Stiboka, Wageningen, The NetherlandsGoogle Scholar
  41. Suddick EC, Six J (2013) An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci Total Environ 465:298–307. doi:10.1016/j.scitotenv.2013.01.094 CrossRefPubMedGoogle Scholar
  42. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014
  43. Van de Voorde TFJ, Bezemer TM, Van Groenigen JW, Jeffery S, Mommer L (2014) Soil biochar amendment in a nature restoration area: effects on plant productivity and community composition. Ecol Appl 24:1167–1177. doi:10.1890/13-0578.1 CrossRefPubMedGoogle Scholar
  44. Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  45. Velthof GL, Kuikman PJ, Oenema O (2002) Nitrous oxide emissions from soils amended with crop residues. Nutr Cycl Agroecosyst 62:249–261. doi:10.1023/A:1021259107244 CrossRefGoogle Scholar
  46. von Rein I, Gessler A, Premke K, Keitel C, Ulrich A, Kayler ZE (2016) Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum. Glob Chang Biol 22:2861–2874. doi:10.1111/gcb.13270 CrossRefGoogle Scholar
  47. Wardle D A, Nilsson M C, Zackrisson O (2008) Fire-Derived Charcoal Causes Loss of Forest Humus. Science 320, 629. doi:10.1126/science.1154960
  48. Warnock D, Lehmann J, Kuyper T, Rillig M (2007) Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300:9–20. doi:10.1007/s11104-007-9391-5 CrossRefGoogle Scholar
  49. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56. doi:10.1038/ncomms1053 CrossRefPubMedGoogle Scholar
  50. Yoo G, Kang H (2012) Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J Environ Qual 41:1193–1202. doi:10.2134/jeq2011.0157 CrossRefPubMedGoogle Scholar
  51. Zelles (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29. doi:10.1007/s003740050533
  52. Zhang QZ, Dijkstra FA, Liu XR, Wang YD, Huang J, Lu N (2014) Effects of biochar on soil microbial biomass after four years of consecutive application in the North China plain. PLoS One 9:e102062. doi:10.1371/journal.pone.0102062 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zheng J, Stewart CE, Cortufo MF (2012) Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J Environ Qual 41:1361–1370. doi:10.2134/jeq2012.0019 CrossRefPubMedGoogle Scholar
  54. Zimmerman A R, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43, 1169–1179Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Crop and Environment SciencesHarper Adams UniversityNewportUK
  2. 2.Department of Soil QualityWageningen UniversityWageningenThe Netherlands
  3. 3.Low Carbon Energy and Environment Network, Institute of Biological Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
  4. 4.Plant Ecology and Nature Conservation GroupWageningen UniversityWageningenThe Netherlands
  5. 5.Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  6. 6.Institute of Biology, Section Plant Ecology and PhytochemistryLeiden UniversityLeidenThe Netherlands

Personalised recommendations