Plant and Soil

, Volume 415, Issue 1–2, pp 359–372 | Cite as

Decomposition rates of fine roots from three herbaceous perennial species: combined effect of root mixture composition and living plant community

  • Iván PrietoEmail author
  • Marine Birouste
  • Ezequiel Zamora-Ledezma
  • Anaïs Gentit
  • Jeanne Goldin
  • Florence Volaire
  • Catherine RoumetEmail author
Regular Article



In most ecosystems, plant roots from different species decompose in mixtures and in the presence of living roots; however much root decomposition research has focused on how roots of individual species or artificial mixtures decompose in the absence of living plants. We thus examined two poorly studied components of root litter decomposition: 1) whether decomposition of root mixtures can be predicted from the sum of the decomposition rates of each component species and 2) how living plants influence rates of root decomposition.


Decomposition rates of roots from three perennial herbaceous Mediterranean species grown in monocultures and in two- and three-species mixtures were determined after a one-year incubation period under their living community and in non-vegetated soil (bare soil). Soil respiration in the presence of glucose (substrate induced respiration, SIR) was measured in each plant community and in bare soil.


Decomposition rates of root mixtures cannot be predicted from decomposition rates of the component species, both additive and non-additive effects were observed; the presence of low quality roots of Carex humilis in mixtures strongly negatively influenced root decomposition. The presence of living plants stimulated root decomposition in monocultures and two-species communities, likely through an enhanced microbial activity (SIR) under plant communities.


This study highlights that root decomposition cannot be predicted from decomposition rates of the component species and is more influenced by endogenous factors or root litter functional composition than by plant community composition.


Living plant effects Mediterranean species Microbial activity Non-additivity Root decomposition Root mixtures 



We thank Marie-Laure Navas for stimulating discussions, Pascal Chapon and Karim Barkaoui for their help in setting up and managing the field-experiment and Noelia Portillo for her help washing roots and preparing the litterbags. Thanks are due to the staff of the CEFE experimental field and of the Plateforme d’Analyses Chimiques en Ecologie (PACE) (technical facilities of the Labex Centre Méditerranéen de l’Environnement et de la Biodiversité). IP was funded by the Agence Nationale de la Recherche (Ecosfix ANR-10-STRA-003-001) and MB was funded by the Agence de l’Environnement et de la Maîtrise de l’Energie (ADEME) and the Centre International d’études supérieures en sciences agronomiques (Montpellier SupAgro). This work was funded by the Agence Nationale de la Recherche (projects O2LA, ANR-09-STRA-09 and Ecosfix, ANR-10-STRA-003-001).

Supplementary material

11104_2016_3163_MOESM1_ESM.docx (4.5 mb)
ESM 1 (DOCX 4.50 mb)


  1. Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397CrossRefPubMedGoogle Scholar
  2. Aulen M, Shipley B, Bradley R (2012) Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Ann Bot 109:287–297. doi: 10.1093/aob/mcr259 CrossRefPubMedGoogle Scholar
  3. Austin AT, Zanne AE (2015) Whether in life or in death: fresh perspectives on how plants affect biogeochemical cycling. J Ecol 103:1367–1371. doi: 10.1111/1365-2745.12486 CrossRefGoogle Scholar
  4. Ayres E, Steltzer H, Simmons BL et al (2009) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. doi: 10.1016/j.soilbio.2008.12.022 CrossRefGoogle Scholar
  5. Barkaoui K, Roumet C, Volaire F (2016) Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agric Ecosyst Environ 231:122–132. doi: 10.1016/j.agee.2016.06.035 CrossRefGoogle Scholar
  6. Bates D, Maechler M, Bolker B et al (2015) Linear mixed-effects models using “Eigen” and S4. R Packag. version 1.1-11Google Scholar
  7. Beare MH, Neely CL, Coleman DC, Hargrove WL (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biol Biochem 22:585–594CrossRefGoogle Scholar
  8. Bernard-Verdier M, Navas ML, Vellend M et al (2012) Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J Ecol 100:1422–1433. doi: 10.1111/1365-2745.12003 CrossRefGoogle Scholar
  9. Birouste M, Kazakou E, Blanchard A, Roumet C (2012) Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot 109:463–472. doi: 10.1093/aob/mcr297 CrossRefPubMedGoogle Scholar
  10. Carrera AL, Bertiller MB, Larreguy C (2008) Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant Soil 311:39–50. doi: 10.1007/s11104-008-9655-8 CrossRefGoogle Scholar
  11. Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570CrossRefGoogle Scholar
  12. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I- One-table methods. R News 4:5–10Google Scholar
  13. Clemmensen KE, Bahr A, Ovaskainen O et al (2013) Roots and associated fungi drive long-term carbon sequestration in Boreal forest. Science 339:1615–1618. doi: 10.1126/science.1231923 CrossRefPubMedGoogle Scholar
  14. Cong W-F, Hoffland E, Li L et al (2015) Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant Soil 399–411. doi: 10.1007/s11104-015-2433-5
  15. Coq S, Weigel J, Butenschoen O et al (2011) Litter composition rather than plant presence affects decomposition of tropical litter mixtures. Plant Soil 343:273–286. doi: 10.1007/s11104-011-0717-y CrossRefGoogle Scholar
  16. Daget P (1977) Le bioclimat méditerranéen: caractères généraux, modes de caractérisation. Vegetatio 34:1–20CrossRefGoogle Scholar
  17. de Graaff M-A, Schadt CW, Rula K et al (2011) Elevated CO2 and plant species diversity interact to slow root decomposition. Soil Biol Biochem 43:2347–2354. doi: 10.1016/j.soilbio.2011.07.006 CrossRefGoogle Scholar
  18. de Vries FT, Shade A (2013) Controls on soil microbial community stability under climate change. Front Microbiol 4:1–16. doi: 10.3389/fmicb.2013.00265 CrossRefGoogle Scholar
  19. Downing AL, Leibold MA (2002) Ecosystem consequences of species richness and composition in pond food webs. Nature 416:837–841. doi: 10.1038/416837a CrossRefPubMedGoogle Scholar
  20. Fox J, Weisberg S, Friendly M et al (2014) Effect displays for linear, generalized linear, and other models. J Stat Softw 8:1–27Google Scholar
  21. Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol 186:879–889. doi: 10.1111/j.1469-8137.2010.03228.x CrossRefPubMedGoogle Scholar
  22. Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630. doi: 10.1111/j.1365-2745.2011.01943.x CrossRefGoogle Scholar
  23. García-Palacios P, Prieto I, Ourcival J-M, Hättenschwiler S (2016) Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall. Ecosystems 19:490–503. doi: 10.1007/s10021-015-9946-x CrossRefGoogle Scholar
  24. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. doi: 10.1111/j.0030-1299.2004.12738.x CrossRefGoogle Scholar
  25. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25(6):372–380Google Scholar
  26. Gholz HL, Wedin DA, Smitherman SM et al (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765. doi: 10.1046/j.1365-2486.2000.00349.x CrossRefGoogle Scholar
  27. Grime JPJ (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:891–899CrossRefGoogle Scholar
  28. Guerrero-Ramírez NR, Craven D, Messier C et al (2016) Root quality and decomposition environment, but not tree species richness, drive root decomposition in tropical forests. Plant Soil 404:125–139. doi: 10.1007/s11104-016-2828-y CrossRefGoogle Scholar
  29. Harell FE Jr (2015) Hmisc: Harrell Miscellaneous. R Packag. version 3.17-2Google Scholar
  30. Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci 102:1519–1524CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. doi: 10.1146/annurev.ecolsys.36.112904.151932 CrossRefGoogle Scholar
  32. Hawkes CV, Kivlin SN, Rocca JD et al (2011) Fungal community responses to precipitation. Glob Chang Biol 17:1637–1645. doi: 10.1111/j.1365-2486.2010.02327.x CrossRefGoogle Scholar
  33. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi: 10.1007/s11104-008-9885-9 CrossRefGoogle Scholar
  34. Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513. doi: 10.1007/s00442-009-1479-6 CrossRefPubMedGoogle Scholar
  35. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi: 10.1002/bimj.200810425 CrossRefPubMedGoogle Scholar
  36. Jenkinson D (1977) Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions. J Soil Sci 28:424–434CrossRefGoogle Scholar
  37. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi: 10.1007/s11104-009-9925-0 CrossRefGoogle Scholar
  38. Lecerf A, Marie G, Kominoski JS et al (2011) Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92:160–169. doi: 10.1890/10-0315.1 CrossRefPubMedGoogle Scholar
  39. Lei P, Bauhus J (2010) Use of near-infrared reflectance spectroscopy to predict species composition in tree fine-root mixtures. Plant Soil 333:93–103. doi: 10.1007/s11104-010-0325-2 CrossRefGoogle Scholar
  40. Liu P, Huang J, Han X, Sun O (2009) Litter decomposition in semiarid grassland of Inner Mongolia, China. Rangel Ecol Manag 62:305–313CrossRefGoogle Scholar
  41. Makkonen M, Berg MP, van Logtestijn RSP et al (2013) Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122:987–997. doi: 10.1111/j.1600-0706.2012.20750.x CrossRefGoogle Scholar
  42. Martijn Bezemer T, van der Putten WH, Martens H et al (2013) Above- and below-ground herbivory effects on below-ground plant-fungus interactions and plant-soil feedback responses. J Ecol 101:325–333. doi: 10.1111/1365-2745.12045 CrossRefGoogle Scholar
  43. McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490. doi: 10.2307/1938874 CrossRefGoogle Scholar
  44. McLaren J, Turkington R (2010) Plant functional group identity differentially affects leaf and root decomposition. Glob Chang Biol 16:3075–3084. doi: 10.1111/j.1365-2486.2009.02151.x Google Scholar
  45. Miller RM (2005) The nonmycorrhizal root—A strategy for survival in nutrient-impoverished soils. New Phytol 165:655–658. doi: 10.1111/j.1469-8137.2005.01331.x CrossRefPubMedGoogle Scholar
  46. Mommer L, Wagemaker CAM, De Kroon H, Ouborg NJ (2008) Unravelling below-ground plant distributions: a real-time polymerase chain reaction method for quantifying species proportions in mixed root samples. Mol Ecol Resour 8:947–953. doi: 10.1111/j.1755-0998.2008.02130.x CrossRefPubMedGoogle Scholar
  47. Mueller K, Tilman G, Fornara D, Hobbie S (2013) Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment. Ecology 94:787–793CrossRefGoogle Scholar
  48. Nambiar EKS (1987) Do nutrients retranslocate from fine roots? Can J For Res 17:913–918. doi: 10.1139/x87-143 CrossRefGoogle Scholar
  49. Nicolardot B, Denys D, Lagacherie B et al (1995) Decomposition of 15N-labelled catch-crop residues in soil: evaluation of N mineralization and plant-N uptake potentials under controlled conditions. Eur J Soil Sci 46:115–123. doi: 10.1111/j.1365-2389.1995.tb01818.x CrossRefGoogle Scholar
  50. Pérez Harguindeguy N, Blundo CM, Gurvich DE et al (2008) More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant Soil 303:151–159. doi: 10.1007/s11104-007-9495-y CrossRefGoogle Scholar
  51. Perez G, Aubert M, Decaëns T et al (2013) Home-field advantage: a matter of interaction between litter biochemistry and decomposer biota. Soil Biol Biochem 67:245–254. doi: 10.1016/j.soilbio.2013.09.004 CrossRefGoogle Scholar
  52. Pérez-ramos IM, Roumet C, Cruz P et al (2012) Evidence for a “plant community economics spectrum ” driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100:1315–1327. doi: 10.1111/1365-2745.12000 CrossRefGoogle Scholar
  53. Pérez-Ramos IIM, Volaire F, Fattet M et al (2013) Tradeoffs between functional strategies for resource-use and drought-survival in Mediterranean rangeland species. Environ Exp Bot 87:126–136. doi: 10.1016/j.envexpbot.2012.09.004 CrossRefGoogle Scholar
  54. Personeni E, Loiseau P (2004) How does the nature of living and dead roots affect the residence time of carbon in the root litter continuum? Plant Soil 267:129–141. doi: 10.1007/s11104-005-4656-3 CrossRefGoogle Scholar
  55. Pinheiro JC, Bates DM, DebRoy S et al (2014) Linear and nonlinear mixed effects models. R Packag. version 3.1-125Google Scholar
  56. Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733. doi: 10.1111/1365-2745.12537 CrossRefGoogle Scholar
  57. R Development Core Team (2013) R: a language and environment for statistical computingGoogle Scholar
  58. Reid JB, Goss MJ (1982) Suppression of decomposition of 14C-labelled plant roots in the presence of living roots of maize and perennial ryegrass. J Soil Sci 33:387–395CrossRefGoogle Scholar
  59. Robinson C, Kirkham J, Littlewood R (1999) Decomposition of root mixtures from high arctic plants: a microcosm study. Soil Biol Biochem 31:1101–1108CrossRefGoogle Scholar
  60. Robinson D, Davidson H, Trinder C, Brooker R (2010) Root-shoot growth responses during interspecific competition quantified using allometric modelling. Ann Bot 106:921–926. doi: 10.1093/aob/mcq186 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Romanowicz KJ, Freedman ZB, Upchurch RA et al (2016) Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol Ecol 92:1–9. doi: 10.1093/femsec/fiw14 CrossRefGoogle Scholar
  62. Roumet C, Picon-Cochard C, Dawson LA et al (2006) Quantifying species composition in root mixtures using two methods: near-infrared reflectance spectroscopy and plant wax markers. New Phytol 170:631–638. doi: 10.1111/j.1469-8137.2006.01698.x CrossRefPubMedGoogle Scholar
  63. Roumet C, Birouste M, Picon-Cochard C et al (2016) Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826. doi: 10.1111/nph.13828 CrossRefPubMedGoogle Scholar
  64. Salamanca EF, Kaneko N, Katagiri S (1998) Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods. Ecol Eng 10:53–73. doi: 10.1016/S0925-8574(97)10020-9 CrossRefGoogle Scholar
  65. Shi A, Penfold C, Marschner P (2012) Decomposition of roots and shoots of perennial grasses and annual barley—separately or in two residue mixes. Biol Fertil Soils 49:673–680. doi: 10.1007/s00374-012-0760-8 CrossRefGoogle Scholar
  66. Silver WLWWL, Miya RKR (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. doi: 10.1007/s004420100740 CrossRefPubMedGoogle Scholar
  67. Smith SW, Woodin SJ, Pakeman RJ et al (2014) Root traits predict decomposition across a landscape-scale grazing experiment. New Phytol 203:851–862. doi: 10.1111/nph.12845 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sparling G, Cheshire M, Mundie C (1982) Effect of barley plants on the decomposition of 14C‐labelled soil organic matter. J Soil Sci 33:89–100CrossRefGoogle Scholar
  69. Tardif A, Shipley B (2013) Using the biomass-ratio and idiosyncratic hypotheses to predict mixed-species litter decomposition. Ann Bot 111:135–141. doi: 10.1093/aob/mcs241 CrossRefPubMedGoogle Scholar
  70. Van Der Krift T, Kuikman P, Berendse F (2002) The effect of living plants on root decomposition of four grass species. Oikos 96:36–45CrossRefGoogle Scholar
  71. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. J Assoc Off Agric Chem 46:829–835Google Scholar
  72. Vivanco L, Austin AT (2006) Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150:97–107. doi: 10.1007/s00442-006-0495-z CrossRefPubMedGoogle Scholar
  73. Wardle D, Bonner KI, Nicholson K (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258CrossRefGoogle Scholar
  74. Wardle DA, Bardgett RD, Klironomos JN et al (2004) Ecological linkages between aboveground and belowground biota. Science 304(80-):1629–1633. doi: 10.1126/science.1094875 CrossRefPubMedGoogle Scholar
  75. Wardle DA, Yeates GW, Barker GM, Bonner KI (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062. doi: 10.1016/j.soilbio.2005.09.003 CrossRefGoogle Scholar
  76. Zanne AE, Oberle B, Dunham KM et al (2015) A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates. J Ecol 103:1421–1431. doi: 10.1111/1365-2745.12474 CrossRefGoogle Scholar
  77. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. doi: 10.1093/jpe/rtn002 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Iván Prieto
    • 1
    Email author
  • Marine Birouste
    • 1
  • Ezequiel Zamora-Ledezma
    • 1
    • 2
  • Anaïs Gentit
    • 1
  • Jeanne Goldin
    • 1
  • Florence Volaire
    • 3
  • Catherine Roumet
    • 1
    Email author
  1. 1.CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHEMontpellier Cedex 5France
  2. 2.PDVSA Intevep, Urbanización Santa Rosa, Sector El TamborCaracasVenezuela
  3. 3.INRA, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHEMontpellier Cedex 5France

Personalised recommendations