Advertisement

Plant and Soil

, Volume 413, Issue 1–2, pp 97–110 | Cite as

Seed selection by earthworms: chemical seed properties matter more than morphological traits

  • Julia Clause
  • Estelle Forey
  • Nico Eisenhauer
  • Charlotte E. Seal
  • Anne Soudey
  • Louise Colville
  • Sébastien Barot
Regular Article

Abstract

Aims

The passage of seeds through the earthworm gut potentially damages seeds, altering seed and seedling performances depending on seed traits. This work was conducted to study to what extent chemical and morphological seed traits determine the seed attractiveness for earthworms.

Methods

We tested seed selection via the ingestion and digestion of 23 grassland plant species spanning a range of 14 morphological and chemical traits by two common earthworm species: the anecic Lumbricus terrestris and the endogeic Allolobophora chlorotica.

Results

Both earthworm species ingested seeds from all plant species. A. chlorotica digested almost all ingested seeds (out of the 15 % ingested), whereas L. terrestris excreted them in varying quantities (out of the 86 % ingested), depending on plant species identity. Seed ingestion rate by L. terrestris was driven by seed oil content and earthworm initial weight. The apparent effect of seed length was explained via seed oil content. Seed digestion rate by L. terrestris was negatively impacted by seed size. Seed ingestion rate by A. chlorotica tended to be impacted by seed protein content and seed length.

Conclusion

Earthworms–seed interactions depend on a variety of seed traits and earthworm identity. Thus, earthworms, via their specific feeding behavior, might facilitate or impede the regeneration of certain plant species and drive plant communities.

Keywords

Above-belowground interactions Fatty acid composition Granivory Oil content Seed predation Seed size 

Notes

Acknowledgments

We want to thank the Royal Botanic Gardens, Kew for providing facilities and material for measurements, and the Jardins Botaniques de Caen et de Bailleul for providing seeds. We also deeply thank Yann Grzanka and Luce Palominos for their help in sorting seeds from earthworm casts, and the Editor and reviewers for their constructive comments and suggestions. Finally, we thank the Upper Normandy Region for funding part of Anne Soudey’s travel to Kew (UK). Our project was funded through the SCALE Network.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

11104_2016_3085_MOESM1_ESM.pdf (172 kb)
ESM 1 (PDF 171 kb)
11104_2016_3085_MOESM2_ESM.pdf (275 kb)
ESM 2 (PDF 274 kb)

References

  1. Aira M, Piearce TG (2009) The earthworm Lumbricus terrestris favours the establishment of Lolium perenne over Agrostis capillaris seedlings through seed consumption and burial. Appl Soil Ecol 41:360–363. doi: 10.1016/j.apsoil.2008.11.007 CrossRefGoogle Scholar
  2. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16. doi: 10.1079/SSR2003150 Google Scholar
  3. Clause J, Margerie P, Langlois E et al (2011) Fat but slim: Criteria of seed attractiveness for earthworms. Pedobiologia 54(Supplement):S159–S165. doi: 10.1016/j.pedobi.2011.08.007 CrossRefGoogle Scholar
  4. Clause J, Barot S, Forey E (2016) Earthworms promote greater richness and abundance in the emergence of plant species across a grassland-forest ecotone. J Plant Ecol . doi: 10.1093/jpe/rtw008rtw008Google Scholar
  5. Colville L, Bradley EL, Lloyd AS et al (2012) Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress. J Exp Bot 63:6519–6530. doi: 10.1093/jxb/ers307 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Curry JP, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiologia 50:463–477. doi: 10.1016/j.pedobi.2006.09.001 CrossRefGoogle Scholar
  7. Dalling JW, Davis AS, Schutte BJ, Elizabeth Arnold A (2011) Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J Ecol 99:89–95. doi: 10.1111/j.1365-2745.2010.01739.x CrossRefGoogle Scholar
  8. Decaëns T, Mariani L, Betancourt N, Jiménez JJ (2003) Seed dispersion by surface casting activities of earthworms in Colombian grasslands. Acta Oecol 24:175–185. doi: 10.1016/S1146-609X(03)00083-3 CrossRefGoogle Scholar
  9. Donath TW, Eckstein RL (2012) Litter effects on seedling establishment interact with seed position and earthworm activity. Plant Biol 14:163–170. doi: 10.1111/j.1438-8677.2011.00490.x PubMedGoogle Scholar
  10. Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  11. Eisenhauer N, Schuy M, Butenschoen O, Scheu S (2009) Direct and indirect effects of endogeic earthworms on plant seeds. Pedobiologia 52:151–162. doi: 10.1016/j.pedobi.2008.07.002 CrossRefGoogle Scholar
  12. Eisenhauer N, Butenschoen O, Radsick S, Scheu S (2010) Earthworms as seedling predators: importance of seeds and seedlings for earthworm nutrition. Soil Biol Biochem 42:1245–1252. doi: 10.1016/j.soilbio.2010.04.012 CrossRefGoogle Scholar
  13. Fisichelli NA, Frelich LE, Reich PB, Eisenhauer N (2012) Linking direct and indirect pathways mediating earthworms, deer, and understory composition in Great Lakes forests. Biol Invasions 15:1057–1066. doi: 10.1007/s10530-012-0350-6 CrossRefGoogle Scholar
  14. Forey E, Barot S, Decaëns T et al (2011) Importance of earthworm–seed interactions for the composition and structure of plant communities: a review. Acta Oecol 37:594–603. doi: 10.1016/j.actao.2011.03.001 CrossRefGoogle Scholar
  15. Fründ H-C, Butt K, Capowiez Y, Eisenhauer N, Emmerling C, Ernst G, Potthoff M, Schädler M, Schrader S (2010) Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiologia 53:119–125. doi: 10.1016/j.pedobi.2009.07.002 CrossRefGoogle Scholar
  16. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090. doi: 10.1126/science.1233774 CrossRefPubMedGoogle Scholar
  17. Gardener CJ, McIvor JG, Jansen A (1993) Survival of seeds of tropical grassland species subjected to bovine digestion. J Appl Ecol 30:75. doi: 10.2307/2404272 CrossRefGoogle Scholar
  18. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Grant JD (1983) The activities of earthworms and the fates of seeds. In: Satchell JE (ed) Earthworm Ecology from Darwin to Vermiculture. Chapman and Hall Ltd, London, pp. 107–122CrossRefGoogle Scholar
  20. Harrison SK, Regnier EE, Schmoll JT (2003) Postdispersal predation of Giant ragweed (Ambrosia trifida) seed in no-tillage corn. Weed Sci 51:955–964CrossRefGoogle Scholar
  21. Hartenstein R, Amico L (1983) Production and carrying capacity for the earthworm Lumbricus terrestris in culture. Soil Biol Biochem 15:51–54. doi: 10.1016/0038-0717(83)90118-9 CrossRefGoogle Scholar
  22. Husson F, Josse J, Lê S, Mazet J (2013) FactoMineR: Multivariate exploratory data analysis and data mining with RGoogle Scholar
  23. Laossi K-R, Noguera DC, Bartolomé-Lasa A et al (2009) Effects of an endogeic and an anecic earthworm on the competition between four annual plants and their relative fecundity. Soil Biol Biochem 41:1668–1673. doi: 10.1016/j.soilbio.2009.05.009 CrossRefGoogle Scholar
  24. Laossi K-R, Noguera D-C, Barot S (2010) Earthworm-mediated maternal effects on seed germination and seedling growth in three annual plants. Soil Biol Biochem 42:319–323. doi: 10.1016/j.soilbio.2009.11.010 CrossRefGoogle Scholar
  25. Law JJ, Gallagher RS (2015) The role of imbibition on seed selection by Harpalus pensylvanicus. Appl Soil Ecol 87:118–124. doi: 10.1016/j.apsoil.2014.11.015 CrossRefGoogle Scholar
  26. Levey DJ, Grajal A (1991) Evolutionary implications of fruit-processing limitations in cedar waxvings. Am Nat 138:171–189CrossRefGoogle Scholar
  27. Makeschin F (1997) Earthworms (Lumbricidae: Oligochaeta): important promoters of soil development and soil fertility. In: Fauna in soil ecosystems: recycling processes, nutrient fluxes, and agricultural production. Marcel Dekker Inc. G. Benckiser, New York, pp. 173–223Google Scholar
  28. Marhan S, Scheu S (2005) Effects of sand and litter availability on organic matter decomposition in soil and in casts of Lumbricus terrestris L. Geoderma 128:155–166. doi: 10.1016/j.geoderma.2004.07.001 CrossRefGoogle Scholar
  29. McRill M, Sagar GR (1973) Earthworms and seeds. Nature 243:482–482. doi: 10.1038/243482a0 CrossRefGoogle Scholar
  30. Milberg P, Lamont BB (1997) Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytol 137:665–672. doi: 10.1046/j.1469-8137.1997.00870.x CrossRefGoogle Scholar
  31. Moody SA, Briones MJI, Piearce TG, Dighton J (1995) Selective consumption of decomposing wheat straw by earthworms. Soil Biol Biochem 27:1209–1213. doi: 10.1016/0038-0717(95)00024-9 CrossRefGoogle Scholar
  32. Paczkowski S, Paczkowska M, Dippel S et al (2013) Volatile combustion products of wood attract Acanthocnemus nigricans (Coleoptera: Acanthocnemidae). J Insect Behav 27:228–238. doi: 10.1007/s10905-013-9430-4 CrossRefGoogle Scholar
  33. Paulsen TR, Colville L, Kranner I, Daws MI, Högstedt G, Vandvik V, Thompson K (2013) Physical dormancy in seeds: a game of hide and seek? New Phytol 198:496–503. doi: 10.1111/nph.12191 CrossRefPubMedGoogle Scholar
  34. Sampedro L, Jeannotte R, Whalen JK (2006) Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus terrestris L. Soil Biol Biochem 38:2188–2198. doi: 10.1016/j.soilbio.2006.02.001 CrossRefGoogle Scholar
  35. Seal CE, Kranner I, Pritchard HW (2008) Quantification of seed oil from species with varying oil content using supercritical fluid extraction. Phytochem Anal 19:493–498. doi: 10.1002/pca.1072 CrossRefPubMedGoogle Scholar
  36. Shi L, Katavic V, Yu Y et al (2012) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J 69:37–46. doi: 10.1111/j.1365-313X.2011.04768.x CrossRefPubMedGoogle Scholar
  37. Shumway DL, Koide RT (1994) Seed preferences of Lumbricus terrestris L. Appl Soil Ecol 1:11–15. doi: 10.1016/0929-1393(94)90019-1 CrossRefGoogle Scholar
  38. Souza FHDD, Marcos-Filho J (2001) The seed coat as a modulator of seed-environment relationships in Fabaceae. Bras J Bot 24:365–375. doi: 10.1590/S0100-84042001000400002 CrossRefGoogle Scholar
  39. Stanley MC, Lill A (2002) Does seed packaging influence fruit consumption and seed passage in an avian frugivore? Condor 104:136–145. doi: 10.1650/0010-5422(2002)104[0136:DSPIFC]2.0.CO;2 CrossRefGoogle Scholar
  40. Tewksbury JJ, Reagan KM, Machnicki NJ et al (2008) Evolutionary ecology of pungency in wild chilies. Proc Natl Acad Sci 105:11808–11811. doi: 10.1073/pnas.0802691105 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Thompson K, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241. doi: 10.2307/2389893 CrossRefGoogle Scholar
  42. Traba J, Azcárate FM, Peco B (2006) The fate of seeds in Mediterranean soil seed banks in relation to their traits. J Veg Sci 17:5–10. doi: 10.1111/j.1654-1103.2006.tb02417.x CrossRefGoogle Scholar
  43. Traveset A, Robertson AW, Rodríguez-Pérez J (2007) A review on the role of endozoochory in seed germination. In: Seed dispersal: theory and its application in a changing world., CABI Publishing, Wallingford, UK. Dennis AJ, Schupp EW, Green RJ, Westcott DA, pp 78–103Google Scholar
  44. van Groenigen JW, Lubbers IM, Vos HMJ et al (2014) Earthworms increase plant production: a meta-analysis. Sci Rep 4:6365CrossRefPubMedGoogle Scholar
  45. Willems JH, Huijsmans KGA (1994) Vertical seed dispersal by earthworms: a quantitative approach. Ecography 17:124–130. doi: 10.1111/j.1600-0587.1994.tb00084.x CrossRefGoogle Scholar
  46. Yang X, Baskin CC, Baskin JM et al (2013) Hydrated mucilage reduces post-dispersal seed removal of a sand desert shrub by ants in a semiarid ecosystem. Oecologia 173:1451–1458. doi: 10.1007/s00442-013-2735-3 CrossRefPubMedGoogle Scholar
  47. Yeomans MR (1998) Taste, palatability and the control of appetite. Proc Nutr Soc 57:609–615. doi: 10.1079/PNS19980089 CrossRefPubMedGoogle Scholar
  48. Zaller JG, Saxler N (2007) Selective vertical seed transport by earthworms: implications for the diversity of grassland ecosystems. Eur J soil Biol 43(Supplement 1):S86–S91. doi: 10.1016/j.ejsobi.2007.08.010 CrossRefGoogle Scholar
  49. Zhang H, Schrader S (1993) Earthworm effects on selected physical and chemical properties of soil aggregates. Biol Fertil Soils 15:229–234. doi: 10.1007/BF00361617 CrossRefGoogle Scholar
  50. Zirbes L, Mescher M, Vrancken V et al (2011) Earthworms use odor cues to locate and feed on microorganisms in soil. PLoS One 6:e21927. doi: 10.1371/journal.pone.0021927 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Normandie Univ, UNIROUEN, IRSTEA, ECODIVRouenFrance
  2. 2.Laboratoire Ecologie & Biologie des Interactions—UMR CNRS 7267, Equipe Ecologie Evolution SymbioseUniversité de PoitiersPoitiers Cedex 9France
  3. 3.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  4. 4.Institute of BiologyLeipzig UniversityLeipzigGermany
  5. 5.Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, KewWest SussexUK
  6. 6.IRD - iEES ParisParis cedex 05France

Personalised recommendations