Advertisement

Plant and Soil

, Volume 407, Issue 1–2, pp 275–278 | Cite as

Plant olfaction: using analytical chemistry to elucidate mechanisms of plant growth and interaction

  • Jeffrey D. Weidenhamer
Commentary

Abstract

Background and Scope

Growing evidence suggests that volatile organic compounds (VOCs) play important roles in plant-plant, plant-microbe and plant-environment interactions. Demonstrating such mechanisms requires the use of innovative analytical techniques to monitor VOCs in and above soils. In this issue, Waters et al. provide experimental evidence that stolons of the woodland strawberry, Fragaria vesca, forage for nutrient-rich soil patches by a chemotropic mechanism.

Conclusions

These experimental results not only help clarify the means by which this clonal plant locates nutrients in a heterogeneous environment, but also demonstrate the power of using the tools of modern analytical chemistry to elucidate plant-plant and plant-environment interactions.

Keywords

Clonal plants Nutrient foraging Passive sampling Plant-plant interactions Rhizosphere Volatile organic compounds 

References

  1. Bartels B, Svatoš A (2015) Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI. Front Plant Sci 6:471CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6:e27195CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blossfeld S, Schreiber CM, Liebsch G, Kuhn AJ, Hinsinger P (2013) Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes. Ann Bot-London 112:267–276CrossRefGoogle Scholar
  4. Callaway RM (2002) The detection of neighbors by plants. Trends Ecol Evol 17:104–105CrossRefGoogle Scholar
  5. Cardoso C, Ruyter-Spira C, Bouwmeester HJ (2011) Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci 180:414–420CrossRefPubMedGoogle Scholar
  6. Delory B M, Delaplace P, Fauconnier M-L, and du Jardin P 2016 Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant Soil 402, 1–26Google Scholar
  7. Falik O, Reides P, Gersani M, Novoplansky A (2003) Self/non-self discrimination in roots. J Ecol 91:525–531CrossRefGoogle Scholar
  8. Gersani M, O'Brien EE, Maina GM, Abramsky Z (2001) Tragedy of the commons as a result of root competition. J Ecol 89:660–669CrossRefGoogle Scholar
  9. Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83CrossRefGoogle Scholar
  10. Harper JL (1977) Population Biology of Plants. Academic Press, New YorkGoogle Scholar
  11. Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci U S A 104:5467–5472CrossRefPubMedPubMedCentralGoogle Scholar
  12. Helms AM, De Moraes CM, Tooker JF, Mescher MC (2013) Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proc Natl Acad Sci U S A 110:199–204CrossRefPubMedGoogle Scholar
  13. Inselsbacher E, Öhlund J, Jämtgård S, Huss-Danell K, Näsholm T (2011) The potential of microdialysis to monitor organic and inorganic nitrogen compounds in soil. Soil Biol Biochem 43:1321–1332CrossRefGoogle Scholar
  14. Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra-and interplant communication. Ecology 87:922–930CrossRefPubMedGoogle Scholar
  15. Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292CrossRefPubMedGoogle Scholar
  16. Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two Mojave Desert shrubs. Ecology 73:2145–2151CrossRefGoogle Scholar
  17. Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54:1931–1939CrossRefPubMedGoogle Scholar
  18. Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967CrossRefPubMedGoogle Scholar
  19. Ryu C-M, Farag MA, C-H H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026CrossRefPubMedPubMedCentralGoogle Scholar
  20. Schmid C, Bauer S, Müller B, Bartelheimer M (2013) Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress. Front Plant Sci 4:296CrossRefPubMedPubMedCentralGoogle Scholar
  21. Sulyok M, Miró M, Stingeder G, Koellensperger G (2005) The potential of flow-through microdialysis for probing low-molecular weight organic anions in rhizosphere soil solution. Anal Chim Acta 546:1–10CrossRefGoogle Scholar
  22. van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265CrossRefPubMedGoogle Scholar
  23. Waters EM, Watson MA (2015) Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca. Front Plant Sci 6:814CrossRefPubMedPubMedCentralGoogle Scholar
  24. Waters EM, Soini HA, Novotny MV, Watson MA (2016) Volatile organic compounds (VOCs) drive nutrient foraging in the clonal woodland strawberry, Fragaria vesca. Plant Soil. doi: 10.1007/s11104-016-2934-x
  25. Weidenhamer JD, Macias FA, Fischer NH, Williamson, GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807Google Scholar
  26. Weidenhamer JD, Boes PD, Wilcox DS (2009) Solid-phase root zone extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322:177–186CrossRefGoogle Scholar
  27. Weston LA, Skoneczny D, Weston PA, Weidenhamer JD (2015) Metabolic profiling: An overview—New approaches for the detection and functional analysis of biologically active secondary plant products. J Allelochem Interact 1:15–27Google Scholar
  28. Zhu X, Skoneczny D, Weidenhamer JD, Mwendwa JM, Weston PA, Gurr GM, Callaway RM, Weston LA (2016) Identification and localization of bioactive naphthoquinones in the roots and rhizosphere of Paterson’s curse (Echium plantagineum), a noxious invader. J Exp Bot. doi: 10.1093/jxb/erw182 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Geology & PhysicsAshland UniversityAshlandUSA

Personalised recommendations