Plant and Soil

, Volume 411, Issue 1–2, pp 275–291 | Cite as

Which root architectural elements contribute the best to anchorage of Pinus species? Insights from in silico experiments

  • Ming Yang
  • Pauline Défossez
  • Frédéric Danjon
  • Sylvain Dupont
  • Thierry Fourcaud
Regular Article

Abstract

Background and Aims

Root anchorage function is crucial for tree survival as most trees are exposed to recurrent wind throughout their lifespan. Trees exhibit a large variability of root system architecture (RSA) due genetic and environmental factors. This study aims to understand the links between RSA and tree stability.

Methods

A 3D biomechanical model was used to simulate tree overturning. To capture the variability of sinker RSA, fourteen virtual root patterns were created from an ensemble average of measured Pinus pinaster root systems. Root virtual patterns and tree-pulling simulations were verified against experimental data.

Results

The model predicts realistic tree anchorage strength, root stress, and failure patterns. Only a few root components contribute significantly to anchorage strength. The taproot contributes the most to anchorage rigidity, representing 61 % of the anchorage strength. The windward roots failure drives ultimate anchorage failure, representing 25 % of the anchorage strength. Simulations show that root secondary thickening induces higher anchorage rigidity and increases anchorage strength by 58 %.

Conclusions

This innovative approach appears promising for describing tree stability and its acclimation to external constraints.

Keywords

Root system architecture Numerical modelling Root anchorage Root stress  Failure patterns 

Supplementary material

11104_2016_2992_MOESM1_ESM.docx (795 kb)
ESM 1(DOCX 795 kb)

References

  1. Atger C, Edelin C (1994) Stratégies d’occupation du milieu souterrain par les systèmes racinaires des arbres. Rev d’Ecologie (Terre Vie) 49:343–356Google Scholar
  2. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407. doi:10.1093/aob/mcl260 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonnesoeur V, Constant T, Moulia B, Fournier M (2016) Forest trees filter chronic wind-signals to acclimate to high winds. New Phytol. doi:10.1111/nph.13836 PubMedGoogle Scholar
  4. Coutand C, Dupraz C, Jaouen G, et al. (2008) Mechanical stimuli regulate the allocation of biomass in trees: Demonstration with young Prunus avium trees. Ann Bot 101:1421–1432. doi:10.1093/aob/mcn054 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Coutts MP (1983) Root architecture and tree stability. Plant Soil 71:171–188. doi:10.1007/BF02182653 CrossRefGoogle Scholar
  6. Coutts MP (1986) Components of tree stability in Sitka spruce on peaty gley soil. Forestry 59:173–197CrossRefGoogle Scholar
  7. Coutts MP (1989) Factors affecting the direction of growth of tree roots. Ann des Sci For 46:S277–S287CrossRefGoogle Scholar
  8. Coutts MP, Lewis GJ (1983) When is the structural root-system determined in Sitka spruce. Plant Soil 71:155–160CrossRefGoogle Scholar
  9. Coutts MP, Nielsen CCN, Nicoll BC (1999) The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 217:1–15CrossRefGoogle Scholar
  10. Crook MJ, Ennos AR (1996) The anchorage mechanics of deep rooted larch, Larix europea x L-japonica. J Exp Bot 47:1509–1517CrossRefGoogle Scholar
  11. Crook MJ, Ennos AR (1998) The increase in anchorage with tree size of the tropical tap rooted tree Mallotus wrayi, King (Euphorbiaceae). Ann Bot 82:291–296CrossRefGoogle Scholar
  12. Crook MJ, Ennos AR, Banks JR (1997) The function of buttress roots: a comparative study of the anchorage systems of buttressed (Aglaia and Nephelium ramboutan species) and non-buttressed (Mallotus wrayi) tropical trees. J Exp Bot 48:1703–1716CrossRefGoogle Scholar
  13. Crouzy B, Edmaier K, Pasquale N, Perona P (2013) Impact of floods on the statistical distribution of riverbed vegetation. Geomorphology 202:51–58. doi:10.1016/j.geomorph.2012.09.013 CrossRefGoogle Scholar
  14. Cucchi V (2004) Sensibilité au vent des peuplements de Pin maritime (Pinus pinaster Ait.), Analyse comparative de dégâts de tempête, étude expérimentale et modélisation de la résistance au déracinement. Université Bordeaux IGoogle Scholar
  15. Cucchi V, Meredieu C, Stokes A, et al. (2004) Root anchorage of inner and edge trees in stands of Maritime pine (Pinus pinaster Ait.) growing in different podzolic soil conditions. Trees-Structure Funct 18:460–466. doi:10.1007/s00468-004-0330-2 Google Scholar
  16. Danjon F, Bert D, Godin C, Trichet P (1999a) Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant Soil 217:49–63CrossRefGoogle Scholar
  17. Danjon F, Sinoquet H, Godin C, et al. (1999b) Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil 211:241–258CrossRefGoogle Scholar
  18. Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400. doi:10.1111/j.1469-8137.2005.01497.x CrossRefPubMedGoogle Scholar
  19. Danjon F, Caplan JS, Fortin M, Meredieu C (2013a) Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster. Front Plant Sci 4:402. doi:10.3389/fpls.2013.00402 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Danjon F, Khuder H, Stokes A (2013b) Deep phenotyping of coarse root architecture in R. pseudoacacia reveals that tree root system plasticity is confined within its architectural model. PLoS One 8:e83548. doi:10.1371/journal.pone.0083548 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Danquechin Dorval A, Meredieu C, Danjon F (2016) Anchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs. Ann Bot. doi:10.1093/aob/mcw098 PubMedGoogle Scholar
  22. Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361. doi:10.1093/aob/mci033 CrossRefPubMedGoogle Scholar
  23. Dupont S (2016) A simple wind–tree interaction model predicting the probability of wind damage at stand level. Agric For Meteorol 224:49–63. doi:10.1016/j.agrformet.2016.04.014 CrossRefGoogle Scholar
  24. Dupont S, Pivato D, Brunet Y (2015) Wind damage propagation in forests. Agric For Meteorol 214:243–251CrossRefGoogle Scholar
  25. Dupuy LX, Fourcaud T, Stokes A (2005) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278:119–134CrossRefGoogle Scholar
  26. Dupuy LX, Fourcaud T, Lac P, Stokes A (2007) A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture. Am J Bot 94:1506–1514CrossRefPubMedGoogle Scholar
  27. Ennos AR (1989) The mechanics of anchorage in seedlings of sunflower, Helianthus-annuus L. New Phytol 113:185–192CrossRefGoogle Scholar
  28. Ennos AR, Crook MJ, Grimshaw C (1993) A comparative-study of the anchorage systems of himalayan balsam Impatiens-glandulifera and mature sunflower helianthus-annuus. J Exp Bot 44:133–146CrossRefGoogle Scholar
  29. Fourcaud T, Ji J-N, Zhang Z-Q, Stokes A (2008) Understanding the impact of root morphology on overturning mechanisms: A modelling approach. Ann Bot 101:1267–1280. doi:10.1093/aob/mcm245 CrossRefPubMedGoogle Scholar
  30. Fournier M, Stokes A, Coutand C, et al (2006) Tree biomechanics and growth strategies in the context of forest functional ecology. In: Herrel A, Speck T, Rowe NP (eds) Ecology and Biomechanics - A mechanical approach to the ecology of animals and plants. CRC Press-Taylor & Francis Group, 6000 Broken sound parkway NW, STE 300, Boca Raton 33487–2742 USA, pp 1–33Google Scholar
  31. Fraser A (1962) The soil and roots as factors in tree stability. Forestry 35:117–127CrossRefGoogle Scholar
  32. Fraser A, Gardiner B (1967) Rooting and stability in Sitka spruce. For Comm Bull 331-4:40. HMSO, London, p 28Google Scholar
  33. Gardiner B, Peltola H, Kellomaki S (2000) Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol Model 129:1–23CrossRefGoogle Scholar
  34. Gardiner B, Berry P, Moulia B (2016) Review: wind impacts on plant growth, mechanics and damage. Plant Sci 245:94–118. doi:10.1016/j.plantsci.2016.01.006 CrossRefPubMedGoogle Scholar
  35. Hale SE, Gardiner B, Peace A, et al. (2015) Comparison and validation of three versions of a forest wind risk model. Environ Model Softw 68:27–41. doi:10.1016/j.envsoft.2015.01.016 CrossRefGoogle Scholar
  36. James KR, Haritos N, Ades PK (2006) Mechanical stability of trees under dynamic loads. Am J Bot 93:1522–1530CrossRefPubMedGoogle Scholar
  37. Ji J, Kokutse N, Genet M, et al. (2012) Effect of spatial variation of tree root characteristics on slope stability. A case study on Black Locust (Robinia pseudoacacia) and Arborvitae (Platycladus orientalis) stands on the Loess Plateau, China. Catena 92:139–154. doi:10.1016/j.catena.2011.12.008 CrossRefGoogle Scholar
  38. Khuder H, Stokes A, Danjon F, et al. (2007) Is it possible to manipulate root anchorage in young trees? Plant Soil 294:87–102. doi:10.1007/s11104-007-9232-6 CrossRefGoogle Scholar
  39. Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbäume. Paul Parey, HamburgGoogle Scholar
  40. Kretschmann DE (2010) Mechanical Properties of Wood. In: Agriculture USD of, Service F, Laboratory FP (eds) Wood Handbook, wood as an engineering material, CentennialGoogle Scholar
  41. Lundström T, Jonas T, Stockli V, Ammann W (2007a) Anchorage of mature conifers: resistive turning moment, root-soil plate geometry and root growth orientation. Tree Physiol 27:1217–1227. doi:10.1093/treephys/27.9.1217 CrossRefPubMedGoogle Scholar
  42. Lundström T, Jonsson MJ, Kalberer M (2007b) The root–soil system of Norway spruce subjected to turning moment: resistance as a function of rotation. Plant Soil 300:35–49. doi:10.1007/s11104-007-9386-2 CrossRefGoogle Scholar
  43. Mickovski SB, Ennos AR (2003) Anchorage and asymmetry in the root system of Pinus peuce. SILVA Fenn 37:161–173CrossRefGoogle Scholar
  44. Moore JR (2000) Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types. For Ecol Manag 135:63–71CrossRefGoogle Scholar
  45. Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16:891–898CrossRefPubMedGoogle Scholar
  46. Nicoll BC, Berthier S, Achim A, et al. (2006a) The architecture of Picea sitchensis structural root systems on horizontal and sloping terrain. Trees-Structure Funct 20:701–712. doi:10.1007/s00468-006-0085-z CrossRefGoogle Scholar
  47. Nicoll BC, Gardiner BA, Rayner B, Peace AJ (2006b) Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can J For Res 36:1871–1883. doi:10.1139/X06-072 CrossRefGoogle Scholar
  48. Ow LF, Harnas FR, Indrawan IGB, et al. (2010) Tree-pulling experiment: an analysis into the mechanical stability of rain trees. Trees 24:1007–1015. doi:10.1007/s00468-010-0470-5 CrossRefGoogle Scholar
  49. Peltola H, Kellomaki S, Vaisanen H, Ikonen V-P (1999) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Rev Can Rech For 29:647–661CrossRefGoogle Scholar
  50. Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review. For Ecol Manag 175:253–273. doi:10.1016/S0378-1127(02)00134-2 CrossRefGoogle Scholar
  51. Rahardjo H, Harnas FR, Leong EC, et al. (2009) Tree stability in an improved soil to withstand wind loading. Urban For Urban Green 8:237–247CrossRefGoogle Scholar
  52. Ray D, Nicoll BC (1998) The effect of soil water-table depth on root-plate development and stability of Sitka spruce. Forestry 71:169–182CrossRefGoogle Scholar
  53. Reubens B, Poesen J, Danjon F, et al. (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees-Structure Funct 21:385–402. doi:10.1007/s00468-007-0132-4 CrossRefGoogle Scholar
  54. Rodriguez M, de Langre E, Moulia B (2008) A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization. Am J Bot 95:1523–1537. doi:10.3732/ajb.0800161 CrossRefPubMedGoogle Scholar
  55. Ruel JC (1995) Understanding windthrow - Silvicultural implications. For Chron 71:434–445CrossRefGoogle Scholar
  56. Schroth G (1998) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Syst 43:5–34. doi:10.1023/A:1026443018920 CrossRefGoogle Scholar
  57. Schutten J, Dainty J, Davy AJ (2005) Root anchorage and its significance for submerged plants in shallow lakes. J Ecol 93:556–571. doi:10.1111/j.1365-2745.2005.00980.x CrossRefGoogle Scholar
  58. Sellier D, Fourcaud T (2009) Crown structure and wood properties: influence on tree sway and response to high winds. Am J Bot 96:885–896. doi:10.3732/ajb.0800226 CrossRefPubMedGoogle Scholar
  59. Sellier D, Fourcaud T, Lac P (2006) A finite element model for investigating effects of aerial architecture on tree oscillations. Tree Physiol 26:799–806CrossRefPubMedGoogle Scholar
  60. Sellier D, Brunet Y, Fourcaud T (2008) A numerical model of tree aerodynamic response to a turbulent airflow. Forestry 81:279–297CrossRefGoogle Scholar
  61. Starko S, Claman BZ, Martone PT (2015) Biomechanical consequences of branching in flexible wave-swept macroalgae. New Phytol 206:133–140. doi:10.1111/nph.13182 CrossRefPubMedGoogle Scholar
  62. Stokes A (1999) Strain distribution during anchorage failure of Pinus pinaster Ait. at different ages and tree growth response to wind-induced root movement. Plant Soil 217:17–27CrossRefGoogle Scholar
  63. Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind and shading - effects on root architecture. J Exp Bot 46:1139–1146CrossRefGoogle Scholar
  64. Stokes A, Martin F, Sacriste S, Fourcaud T (1997a) Adaptation of tree roots to wind loading: the relationship between mechanical behaviour and wood formation. In: Plant Biomechanics. pp 339–346Google Scholar
  65. Stokes A, Nicoll BC, Coutts MP, Fitter AH (1997b) Responses of young Sitka spruce clones to mechanical perturbation and nutrition: effects on biomass allocation, root development, and resistance to bending. Can J For Res 27:1049–1057CrossRefGoogle Scholar
  66. Stokes A, Berthier S, Sacriste S, Martin F (1998) Variations in maturation strains and root shape in root systems of Maritime pine (Pinus pinaster Ait.). Trees-Structure Funct 12:334–339Google Scholar
  67. Stokes A, Atger C, Bengough AG, et al. (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30. doi:10.1007/s11104-009-0159-y CrossRefGoogle Scholar
  68. Tadrist L, Saudreau M, de Langre E (2014) Wind and gravity mechanical effects on leaf inclination angles. J Theor Biol 341:9–16. doi:10.1016/j.jtbi.2013.09.025 CrossRefPubMedGoogle Scholar
  69. Tamasi E, Stokes A, Lasserre B, et al. (2005) Influence of wind loading on root system development and architecture in oak (Quercus robur L.) seedlings. Trees-Structure Funct 19:374–384. doi:10.1007/s00468-004-0396-x CrossRefGoogle Scholar
  70. Telewski FW, Jaffe MJ (1986) Thigmomorphogenesis: Field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation. Physiol Plant 66:211–218. doi:10.1111/j.1399-3054.1986.tb02411.x CrossRefPubMedGoogle Scholar
  71. Timoshenko (1930) Strength of materials. D. Van Nostrand Company, Inc., New YorkGoogle Scholar
  72. Yang M, Défossez P, Danjon F, Fourcaud T (2014) Tree stability under wind: simulating uprooting with root breakage using a finite element method. Ann Bot 114:695–709. doi:10.1093/aob/mcu122 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ISPA, INRA, Bordeaux Sciences AgroVillenave d’OrnonFrance
  2. 2.BIOGECO, INRAUniversité de BordeauxCestasFrance
  3. 3.AMAP UMR 0931, CIRADMontpellier Cedex 5France

Personalised recommendations