Plant and Soil

, Volume 409, Issue 1–2, pp 435–446 | Cite as

Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks

  • Dunmei LinEmail author
  • Kristina J. Anderson-Teixeira
  • Jiangshan Lai
  • Xiangcheng Mi
  • Haibao Ren
  • Keping MaEmail author
Regular Article


Background and Aims

Forests play a vital role in regulation of the global carbon cycle. Mechanistically understanding how their ecosystem functioning relates to biodiversity is necessary for predicting the consequences of biodiversity loss and for setting conservation priorities. Here, we test whether carbon stocks in a subtropical evergreen broad-leaved forest in China are more strongly influenced by plant functional diversity (FD), as would be predicted by the ‘niche complementarity hypothesis’, or by community-weighted mean (CWM) functional trait values, as would be predicted by the ‘mass ratio hypothesis’.


Using data from a 24-ha plot subdivided into 400 m2 quadrats, we determined relationships of aboveground carbon (AGC) and topsoil (1–10 cm) organic carbon (SOC) to topographic variables, stem density, CWM and FD of six functional traits hypothesized to influence carbon stocks.


After accounting for topographic variables and tree stem density, boosted regression tree models revealed that CWMs were the dominant driving factors for both AGC and SOC, whereas FD had negligible effects. AGC and SOC were influenced by different functional traits, with AGC responding most strongly to CWM values for wood density and maximum tree height, and SOC responding most strongly to elevation, indicating that these carbon stocks are shaped by different underlying mechanisms.


Our results support the mass ratio hypothesis but not the niche complementarity hypothesis. Our study implies that, when it comes to maximizing forest carbon storage, conservation priorities should focus on protection of species with traits associated to high carbon stocks.


Carbon stocks Biodiversity and ecosystem functioning Functional trait Functional diversity Mass ratio hypothesis Niche complementarity 



This work was financially supported by the National Natural Science Foundation of China (NO.31270496), the Fundamental Research Funds for the Central Universities (106112015CDJXY210012) and the 111 Project (B13041).

Supplementary material

11104_2016_2976_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 28 kb)


  1. Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ, Abu Salim K, Zambrano AMA, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng XB, Detto M, XJ D, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao ZQ, Hargrove WW, Hart TB, Hau BCH, He FL, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang MX, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li YD, Li XK, Liu SR, Lum SKY, Lutz JA, Ma KP, Maddalena DM, Makana JR, Malhi Y, Marthews T, Serudin RM, McMahon SM, McShea WJ, Memiaghe HR, Mi XC, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang WG, Sri-ngernyuang K, Sukumar R, Sun IF, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrska T, Wang XH, Wang XG, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob Chang Biol 21:528–549. doi: 10.1111/gcb.12712. CrossRefPubMedGoogle Scholar
  2. Brassard BW, Chen HYH, Cavard X, Laganiere J, Reich PB, Bergeron Y, Pare D, Yuan ZY (2013) Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–219. doi: 10.1111/1365-2745.12023. CrossRefGoogle Scholar
  3. Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Sankaran M, Naeem S (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310: 1029–1031. doi:  10.1126/science.1117682.
  4. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. doi: 10.1111/j.1365-2664.2011.02048.x. CrossRefGoogle Scholar
  5. Cao K, Rao M, Yu J, Liu X, Mi X, Chen J (2013) The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest. Biodivers Sci 21:564–571. doi: 10.3724/SP.J.1003.2013.08068. (in Chinese)Google Scholar
  6. Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–U113. doi: 10.1038/nature09904. CrossRefPubMedGoogle Scholar
  7. Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426–429. doi: 10.1038/415426a. CrossRefPubMedGoogle Scholar
  8. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/Nature11148. CrossRefPubMedGoogle Scholar
  9. Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr 23:563–573. doi: 10.1111/geb.12143. CrossRefGoogle Scholar
  10. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x. CrossRefPubMedGoogle Scholar
  11. Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama, and a comparison with other plots. Springer, New YorkCrossRefGoogle Scholar
  12. Conti G, Díaz S (2013) Plant functional diversity and carbon storage - an empirical test in semi-arid forest ecosystems. J Ecol 101:18–28. doi: 10.1111/1365-2745.12012. CrossRefGoogle Scholar
  13. De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. doi: 10.1111/j.1461-0248.2008.01164.x. CrossRefPubMedGoogle Scholar
  14. De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251. doi: 10.1890/0012-9658. CrossRefPubMedGoogle Scholar
  15. Díaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. P Natl Acad Sci USA 104: 20684–20689. doi:  10.1073/pnas.0704716104.
  16. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x. CrossRefPubMedGoogle Scholar
  17. Fahey TJ, Woodbury PB, Battles JJ, Goodale CL, Hamburg SP, Ollinger SV, Woodall CW (2010) Forest carbon storage: ecology, management, and policy. Front Ecol Environ 8:245–252. doi: 10.1890/080169. CrossRefGoogle Scholar
  18. FAO (Food and Agriculture Organization of the United Nations) (2010) Global Forest resources assessment 2010. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  19. Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L, Canham C (2015) Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol 103:191–201. doi: 10.1111/1365-2745.12346. CrossRefGoogle Scholar
  20. Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology 92:1573–1581. doi: 10.1890/10-1245.1 CrossRefPubMedGoogle Scholar
  21. Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320. doi: 10.1111/j.1461-0248.2004.00579.x. CrossRefGoogle Scholar
  22. Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322. doi: 10.1111/j.1365-2745.2007.01345.x. CrossRefGoogle Scholar
  23. Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65. doi: 10.1111/j.1365-2435.2011.01913.x. CrossRefGoogle Scholar
  24. Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637. doi: 10.1890/03-0799. CrossRefGoogle Scholar
  25. Griffiths RP, Madritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. For Ecol Manag 257:1–7. doi: 10.1016/j.foreco.2008.08.010. CrossRefGoogle Scholar
  26. Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J-C, Hutchings M (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57. doi: 10.1111/1365-2745.12014. CrossRefGoogle Scholar
  27. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi: 10.1046/j.1365-2745.1998.00306.x. CrossRefGoogle Scholar
  28. Heemsbergen DA, Berg MP, Loreau M, van Haj JR, Faber JH, Verhoef HA (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306: 1019–1020. doi:  10.1126/science.1101865.
  29. Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277: 1302–1305. doi:  10.1126/science.277.5330.1302.
  30. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol Monogr 75:3–35. doi: 10.1890/04-0922. CrossRefGoogle Scholar
  31. IPCC (Intergovernmental Panel on Climate Change) (2006) Agriculture, forestry and other land use. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, KanagawaGoogle Scholar
  32. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–202. doi: 10.1038/nature10282. CrossRefPubMedGoogle Scholar
  33. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. P Natl Acad Sci USA 104:864–869. doi: 10.1073/pnas.0604666104. CrossRefGoogle Scholar
  34. Jonsson M, Wardle DA (2010) Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biol Lett 6:116–119. doi: 10.1098/rsbl.2009.0613. CrossRefPubMedGoogle Scholar
  35. Jucker T, Bouriaud O, Coomes DA, Baltzer J (2015) Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct Ecol 29:1078–1086. doi: 10.1111/1365-2435.12428. CrossRefGoogle Scholar
  36. Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vazquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. doi: 10.1038/ncomms7707. CrossRefPubMedGoogle Scholar
  37. Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99:135–147. doi: 10.1111/j.1365-2745.2010.01753.x. CrossRefGoogle Scholar
  38. Legendre P, Mi XC, Ren HB, Ma KP, MJ Y, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674. doi: 10.1890/07-1880.1. CrossRefPubMedGoogle Scholar
  39. Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP (2012) Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS One 7:e48244. doi: 10.1371/journal.pone.0048244. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lin DM, Lai JS, Yang B, Song P, Li N, Ren HB, Ma KP (2015) Forest biomass recovery after different anthropogenic disturbances: relative importance of changes in stand structure and wood density. Eur J For Res 134:769–780. doi: 10.1007/s10342-015-0888-9. CrossRefGoogle Scholar
  41. Liu XJ, Swenson NG, Wright SJ, Zhang LW, Song K, YJ D, Zhang JL, Mi XC, Ren HB, Ma KP (2012) Covariation in plant functional traits and soil fertility within two species-rich forests. PLoS One 7:e34767. doi: 10.1371/journal.pone.0034767. CrossRefPubMedPubMedCentralGoogle Scholar
  42. MEA (Millennium Ecosystem Assessment) (2005) Biodiversity: What is it, where is it, and why is it important? Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Washington, DCGoogle Scholar
  43. Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893. doi: 10.1111/j.1365-2745.2008.01395.x. CrossRefGoogle Scholar
  44. Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. doi: 10.1111/j.1466-8238.2010.00592.x. CrossRefGoogle Scholar
  45. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. doi: 10.1111/j.1461-0248.2006.00924.x. CrossRefPubMedGoogle Scholar
  46. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, Distribution, and protection. Science 344: 987. doi:  10.1126/Science.1246752.
  47. Pla LE, Casanoves F, Di Rienzo JA (2012) Quantifying functional biodiversity. Springer, DordrechtCrossRefGoogle Scholar
  48. Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. J Ecol. doi: 10.1111/1365-2745.12543. Google Scholar
  49. R Development Core Team, 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3–900051–07–0Google Scholar
  50. Ridgeway, G (2010) Gbm: Generalized Boosted Regression Models R Package Version 1.6–3.1.Google Scholar
  51. Ruiz-Benito P, Gomez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala MA (2014) Diversity increases carbon storage and tree productivity in Spanish forests. Glob Ecol Biogeogr 23:311–322. doi: 10.1111/geb.12126. CrossRefGoogle Scholar
  52. Ruiz-Jaen MC, Potvin C (2011) Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol 189:978–987. doi: 10.1111/j.1469-8137.2010.03501.x. CrossRefPubMedGoogle Scholar
  53. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity - Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287.5459.1770. CrossRefPubMedGoogle Scholar
  54. Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Chang 1:304–307. doi: 10.1038/Nclimate1190. CrossRefGoogle Scholar
  55. Schumacher J, Roscher C (2009) Differential effects of functional traits on aboveground biomass in semi-natural grasslands. Oikos 118:1659–1668. doi: 10.1111/j.1600-0706.2009.17711.x. CrossRefGoogle Scholar
  56. Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648. doi: 10.1111/j.1461-0248.2012.01795.x. CrossRefPubMedGoogle Scholar
  57. Stegen JC, Swenson NG, Valencia R, Enquist BJ, Thompson J (2009) Above-ground forest biomass is not consistently related to wood density in tropical forests. Glob Ecol Biogeogr 18:617–625. doi: 10.1111/j.1466-8238.2009.00471.x. CrossRefGoogle Scholar
  58. Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evo S 45:471–493. doi: 10.1146/annurev-ecolsys-120213-091917. CrossRefGoogle Scholar
  59. Villeger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi: 10.1890/07-1206.1. CrossRefPubMedGoogle Scholar
  60. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi: 10.1038/Nature02403. CrossRefPubMedGoogle Scholar
  61. Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Diaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674. doi: 10.1890/09-2335.1. CrossRefPubMedGoogle Scholar
  62. Zhang LW, Mi XC, Shao HB, Ma KP (2011) Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant Soil 347:211–220. doi: 10.1007/s11104-011-0839-2. CrossRefGoogle Scholar
  63. Zhu Y, Zhao GF, Zhang LW, Shen GC, Mi XC, Ren HB, Yu MJ, Chen JH, Chen SW, Fang T, Ma KP (2008) Community composition and structure of Gutianshan forest dynamics plot in a mid-subtropical evergreen broad-leaved forest, East China. Chinese J Plant Ecol 32: 262–273. doi:  10.3773/j.issn.1005-264x.2008.02.004. (in Chinese)

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dunmei Lin
    • 1
    • 2
    • 3
    Email author
  • Kristina J. Anderson-Teixeira
    • 4
    • 5
  • Jiangshan Lai
    • 2
  • Xiangcheng Mi
    • 2
  • Haibao Ren
    • 2
  • Keping Ma
    • 2
    Email author
  1. 1.Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of EducationChongqing UniversityChongqingChina
  2. 2.State Key Laboratory of Vegetation and Environmental Change, Institute of Botanythe Chinese Academy of SciencesBeijingChina
  3. 3.National Centre for International Research of Low-Carbon and Green BuildingsChongqing UniversityChongqingChina
  4. 4.Conservation Ecology CenterSmithsonian Conservation Biology InstituteFront RoyalUSA
  5. 5.Center for Tropical Forest Science-Forest Global Earth ObservatorySmithsonian Tropical Research InstitutePanamaRepublic of Panama

Personalised recommendations