Plant and Soil

, Volume 409, Issue 1–2, pp 459–477 | Cite as

Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests

  • C. E. SmythEmail author
  • B. Titus
  • J. A. Trofymow
  • T. R. Moore
  • C. M. Preston
  • C. E. Prescott
  • the CIDET Working Group
Regular Article


Aims and Methods

We measured changes in mass and in carbon (C), nitrogen (N) and phosphorus (P) concentrations and content of surface-placed and buried wood blocks decomposing over 12 years at 21 sites across Canada to evaluate the influence of the environment on C, N, and P dynamics.

Results and Conclusions

Carbon decomposition over time was best described using a sigmoidal fit, which was slightly better than a negative exponential function. Decomposition was slow at cold and wetland sites, with less than 15 % of the original C content lost after 12 years for 4 upland and 3 wetland sites. Decomposition rates were faster for buried than for surface blocks, except in wetlands and in a few upland sites that had high annual precipitation. Nitrogen was gained during the early stages of decomposition, followed by a net N loss once an average C:N mass ratio of 165 was reached for all upland surface-placed blocks, and 200 for upland buried blocks. Critical C:N values were weakly correlated with C:N ratios in the surface organic horizon, suggesting an influence of forest floor properties on decomposition dynamics with N release occurring sooner on more fertile sites. Critical values for N and P mineralization were greater than those reported for foliar litters.


Forest Wood decomposition Litterbags Carbon dynamics Nutrient dynamics Canadian intersite decomposition experiment 



Climate station data were provided by Environment Canada, Atmospheric and Environment Services. We acknowledge all members of the CIDET Working Group, without whom this study and analysis would not have been possible: D. Anderson (University of Saskatchewan, SK), C. Camiré (Université de Laval, PQ), L. Duchesne (Canadian Forest Service, ON), J. Fyles (McGill University, PQ), L. Kozak (University of Saskatchewan, SK), M. Kranabetter (Ministry of Forests, BC), I. Morrison (Canadian Forest Service, ON), C. Prescott (University of British Columbia, BC), M. Siltanen (Canadian Forest Service, AB), S. Smith (Agriculture Canada, BC), S. Visser (University of Calgary, AB), R. Wein (University of Alberta, AB), and D. White (Dep. Indian and Northern Affairs, YT). More information on CIDET, including a complete list of publications, is available at: The contribution of R. Ferris (technical support), A. Harris and D. Dunn (PFC Chemical Services Lab) and other technical staff and students at the Pacific Forestry Centre is gratefully acknowledged. We thank S. Hararuk and two anonymous reviewers for providing thoughtful and insightful comments on an earlier draft of the manuscript.

Supplementary material

11104_2016_2972_MOESM1_ESM.docx (368 kb)
ESM 1 (DOCX 367 kb)


  1. Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208. doi: 10.1139/b90-287 CrossRefGoogle Scholar
  2. Addison JA, Trofymow JA, Marshall VG (2003a) Abundance, species diversity, and community structure of Collembola in successional coastal temperate forests on Vancouver Island, Canada. Appl Soil Ecol 24:233–246. doi: 10.1016/s0929-1393(03)00090-8 CrossRefGoogle Scholar
  3. Addison JA, Trofymow JA, Marshall VG (2003b) Functional role of Collembola in successional coastal temperate forests on Vancouver Island, Canada. Appl Soil Ecol 24:247–261. doi: 10.1016/s0929-1393(03)00089-1 CrossRefGoogle Scholar
  4. Alban DH, Pastor J (1993) Decomposition of aspen, spruce, and pine boles on two sites in Minnesota. Can J For Res 23:1744–1749CrossRefGoogle Scholar
  5. Allison FE (1973) Soil organic matter and its role in crop production. Elsevier, AmsterdamGoogle Scholar
  6. Anderson JM (1973) The breakdown and decomposition of sweet chestnut (Castanea sativa mill.) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils. Oecologia 12:251–274. doi: 10.1007/BF00347566 CrossRefGoogle Scholar
  7. Ares A, Terry TA, Piatek KB, Harrison RB, Miller RE, Flaming BL, Licata CW, Strahm BD, Harrington CA, Meade R, Anderson HW, Brodie LC, Kraft JM (2007) The fall river long-term site productivity study in coastal Washington: site characteristics, methods, and biomass and carbon and nitrogen stores before and after harvest. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, ORGoogle Scholar
  8. Arthur MA, Fahey TJ (1990) Mass and nutrient content of decaying boles in an Engelmann spruce – subalpine fir forest, Rocky Mountain National Park, Colorado. Can J For Res 20:730–737. doi: 10.1139/x90-096 CrossRefGoogle Scholar
  9. Arthur M, Tritton L, Fahey T (1993) Dead bole mass and nutrients remaining 23 years after clear-felling of a northern hardwood forest. Can J For Res 23:1298–1305CrossRefGoogle Scholar
  10. Ausmus BS (1977) Regulation of wood decomposition rates by arthropod and annelid populations. Ecol Bull 25:180–192. doi: 10.2307/20112579 Google Scholar
  11. Barber B, Van Lear D (1984) Weight loss and nutrient dynamics in decomposing woody loblolly pine logging slash. Soil Sci Soc Am J 48:906–910CrossRefGoogle Scholar
  12. Becker G (1971) Physiological influences on wood-destroying insects of wood compounds and substances produced by microorganisms. Wood Sci Technol 5:236–246. doi: 10.1007/BF00353686 CrossRefGoogle Scholar
  13. Berg B, Ekbohm G (1983) Nitrogen immobilization in decomposing needle litter at variable carbon: nitrogen ratios. Ecology 64:63–67. doi: 10.2307/1937329 CrossRefGoogle Scholar
  14. Berg B, Tamm CO (1994) Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. 11. Nutrient concentrations in decomposing Picea abies needle litter. Scand J For Res 9:99–105. doi: 10.1080/02827589409382818 CrossRefGoogle Scholar
  15. Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73:1377–1383. doi: 10.1139/b95-400 CrossRefGoogle Scholar
  16. Brais S, Paré D, Lierman C (2006) Tree bole mineralization rates of four species of the Canadian eastern boreal forest: implications for nutrient dynamics following stand-replacing disturbances. Can J For Res 36:2331–2340. doi: 10.1139/x06-136 CrossRefGoogle Scholar
  17. Brown S, Mo J, McPherson J, Bell D (1996) Decomposition of woody debris in western Australian forests. Can J For Res 26:954–966CrossRefGoogle Scholar
  18. Burger JA, Pritchett WL (1984) Effects of Clearfelling and site preparation on nitrogen mineralization in a southern pine Stand1. Soil Sci Soc Am J 48:1432–1437. doi: 10.2136/sssaj1984.03615995004800060045x CrossRefGoogle Scholar
  19. Busse MD (1994) Downed bole-wood decomposition in lodgepole pine forests of Central Oregon. Soil Sci Soc Am J 58:221–227. doi: 10.2136/sssaj1994.03615995005800010033x CrossRefGoogle Scholar
  20. Bütler R, Patty L, Le Bayon R-C, Guenat C, Schlaepfer R (2007) Log decay of Picea abies in the Swiss Jura Mountains of Central Europe. For Ecol Manag 242:791–799. doi: 10.1016/j.foreco.2007.02.017 CrossRefGoogle Scholar
  21. Chadwick DR, Ineson P, Woods C, Piearce TG (1998) Decomposition of Pinus sylvestris litter in litter bags: influence of underlying native litter layer. Soil Biol Biochem 30:47–55. doi: 10.1016/S0038-0717(97)00090-4 CrossRefGoogle Scholar
  22. Chen H, Harmon ME, Griffiths RP (2001) Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific northwest: a chronosequence approach. Can J For Res 31:246–260. doi: 10.1139/x00-167 CrossRefGoogle Scholar
  23. Creed IF, Webster KL, Morrison DL (2004) A comparison of techniques for measuring density and concentrations of carbon and nitrogen in coarse woody debris at different stages of decay. Can J For Res 34:744–753. doi: 10.1139/x03-212 CrossRefGoogle Scholar
  24. Eckstein J, Leuschner HH, Bauerochse A, Sass-Klaassen U (2009) Subfossil bog-pine horizons document climate and ecosystem changes during the mid-Holocene. Dendrochronologia 27:129–146CrossRefGoogle Scholar
  25. Ecoregions Working Group (1989) Ecoclimatic regions of Canada, first approximation. Environment Canada, Ecoregions Working Group of Canada, Ottawa,Ontario.Google Scholar
  26. Edmonds RL (1980) Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington. Can J For Res 10:327–337. doi: 10.1139/x80-056 CrossRefGoogle Scholar
  27. Edmonds RL (1987) Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington, U.S.a. Can J For Res 17:499–509. doi: 10.1139/x87-084 CrossRefGoogle Scholar
  28. Edmonds RL, Eglitis A (1989) The role of the Douglas-fir beetle and wood borers in the decomposition of and nutrient release from Douglas-fir logs. Can J For Res 19:853–859. doi: 10.1139/x89-130 CrossRefGoogle Scholar
  29. Edmonds RL, Vogt DJ, Sandberg DH, Driver CH (1986) Decomposition of Douglas-fir and red alder wood in clear-cuttings. Can J For Res 16:822–831. doi: 10.1139/x86-145 CrossRefGoogle Scholar
  30. Edvardsson J, Linderson H, Rundgren M, Hammarlund D (2012) Holocene peatland development and hydrological variability inferred from bog-pine dendrochronology and peat stratigraphy–a case study from southern Sweden. J Quat Sci 27:553–563CrossRefGoogle Scholar
  31. Elliott JC, Smith JE, Cromack K, Chen H, McKay D (2007) Chemistry and ectomycorrhizal communities of coarse wood in young and old-growth forests in the Cascade range of Oregon. Can J For Res 37:2041–2051. doi: 10.1139/x07-014 CrossRefGoogle Scholar
  32. Erickson HE, Edmonds RL, Peterson CE (1985) Decomposition of logging residues in Douglas-fir, western hemlock, Pacific silver fir, and ponderosa pine ecosystems. Can J For Res 15:914–921. doi: 10.1139/x85-147 CrossRefGoogle Scholar
  33. Fasth BG, Harmon ME, Sexton J, White P (2011) Decomposition of fine woody debris in a deciduous forest in North Carolina 1. The Journal of the Torrey Botanical Society 138:192–206CrossRefGoogle Scholar
  34. Freschet GT, Weedon JT, Aerts R, van Hal JR, Cornelissen JHC (2012) Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. J Ecol 100:161–170. doi: 10.1111/j.1365-2745.2011.01896.x CrossRefGoogle Scholar
  35. Ganjegunte GK, Condron LM, Clinton PW, Davis MR, Mahieu N (2004) Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. For Ecol Manag 187:197–211. doi: 10.1016/s0378-1127(03)00332-3 CrossRefGoogle Scholar
  36. Graham RL, Cromack K (1982) Mass, nutrient content and decay rate of dead boles in rain forests of Olympic National Park. Can J For Res 12:511–521CrossRefGoogle Scholar
  37. Grier CC (1978) A Tsuga heterophylla-Picea sitchensis ecosystem of coastal Oregon: decomposition and nutrient balances of fallen logs. Can J For Res 8:198–206CrossRefGoogle Scholar
  38. Hagemann U, Moroni MT, Gleißner J, Makeschin F (2010) Accumulation and preservation of dead wood upon burial by bryophytes. Ecosystems 13:600–611CrossRefGoogle Scholar
  39. Harmon ME (1992) Long-term experiments on log decomposition at the HJ Andrews experimental Forest. US Dept of Agriculture, Portland, ORCrossRefGoogle Scholar
  40. Harmon ME (2009) Woody detritus mass and its contribution to carbon dynamics of old-growth forests: the temporal context. In: Wirth C, Gleixner G, Heimann M (eds) Old-growth forests: function, fate and value. Springer-Verlag, BerlinGoogle Scholar
  41. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaempeer GW, Cromack K, KW C (1986) Ecology of coarse woody debris in temperate. Ecosystems 15:133–302Google Scholar
  42. Harmon ME, Sexton J, Caldwell BA, Carpenter SE (1994) Fungal sporocarp mediated losses of Ca, Fe, K, Mg, Mn, N, P, and Zn from conifer logs in the early stages of decomposition. Can J For Res 24:1883–1893. doi: 10.1139/x94-243 CrossRefGoogle Scholar
  43. Harmon ME, Krankina ON, Sexton J (2000) Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Can J For Res 30:76–84. doi: 10.1139/x99-187 CrossRefGoogle Scholar
  44. Harmon ME, Bond-Lamberty B, Tang J, Vargas R (2011) Heterotrophic respiration in disturbed forests: A review with examples from North America. J Geophys Res Biogeosci:116. doi: 10.1029/2010JG001495
  45. Hart SC, Firestone MK, Paul EA (1992) Decomposition and nutrient dynamics of ponderosa pine needles in a Mediterranean-type climate. Can J For Res 22:306–314. doi: 10.1139/x92-040 CrossRefGoogle Scholar
  46. Haynes RJ (1986) The decomposition process: mineralization, immobilization, humus formation, and degradation. Mineral nitrogen in the plant-soil system. Academic, TorontoGoogle Scholar
  47. Heath G, Edwards C, Arnold M (1964) Some methods for assessing the activity of soil animals in the breakdown of leaves. Pedobiologia 4:80–87Google Scholar
  48. Hendrickson OQ (1991) Abundance and activity of N2-fixing bacteria in decaying wood. Can J For Res 21:1299–1304. doi: 10.1139/x91-183 CrossRefGoogle Scholar
  49. Herrmann S, Prescott CE (2008) Mass loss and nutrient dynamics of coarse woody debris in three Rocky Mountain coniferous forests: 21 year results. Can J For Res 38:125–132. doi: 10.1139/x07-144 CrossRefGoogle Scholar
  50. Hicks WT, Harmon ME, Myrold DD (2003) Substrate controls on nitrogen fixation and respiration in woody debris from the Pacific northwest, USA. For Ecol Manag 176:25–35. doi: 10.1016/S0378-1127(02)00229-3 CrossRefGoogle Scholar
  51. Hungate RE (1940) Nitrogen content of sound and decayed coniferous woods and its relation to loss in weight during decay. Bot Gaz 102:382–392. doi: 10.2307/2472322 CrossRefGoogle Scholar
  52. Hyvönen R, Olsson BA, Lundkvist H, Staaf H (2000) Decomposition and nutrient release from Picea abies (L.) karst. And Pinus sylvestris L. Logging residues. For Ecol Manag 126:97–112CrossRefGoogle Scholar
  53. Janisch JE, Harmon ME, Chen H, Fasth B, Sexton J (2005) Decomposition of coarse woody debris originating by clearcutting of an old-growth conifer forest. Ecoscience 12:151–160CrossRefGoogle Scholar
  54. Jomura M, Kominami Y, Dannoura M, Kanazawa Y (2008) Spatial variation in respiration from coarse woody debris in a temperate secondary broad-leaved forest in Japan. For Ecol Manag 255:149–155CrossRefGoogle Scholar
  55. Jurgensen M, Reed D, Page-Dumroese D, Laks P, Collins A, Mroz G, Degórski M (2006) Wood strength loss as a measure of decomposition in northern forest mineral soil. Eur J Soil Biol 42:23–31. doi: 10.1016/j.ejsobi.2005.09.001 CrossRefGoogle Scholar
  56. Käärik A (1974) Decomposition of wood. Biology of plant litter decomposition 1:129–174CrossRefGoogle Scholar
  57. Köster K, Metslaid M, Engelhart J, Köster E (2015) Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. For Ecol Manag 354:35–42. doi: 10.1016/j.foreco.2015.06.039 CrossRefGoogle Scholar
  58. Krankina ON, Harmon ME, Griazkin AV (1999) Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Can J For Res 29:20–32. doi: 10.1139/x98-162 CrossRefGoogle Scholar
  59. Kuehne C, Donath C, Müller-Using SI, Bartsch N (2008) Nutrient fluxes via leaching from coarse woody debris in a Fagus sylvatica forest in the Solling Mountains, Germany. Can J For Res 38:2405–2413. doi: 10.1139/x08-088 CrossRefGoogle Scholar
  60. Kurz WA, Apps MJ (2006) Developing Canada’s national forest carbon monitoring, accounting and reporting system to meet the reporting requirements of the Kyoto protocol. Mitig Adapt Strateg Glob Chang 11:33–43. doi: 10.1007/s11027-006-1006-6 CrossRefGoogle Scholar
  61. Laiho R, Prescott CE (1999) The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Can J For Res 29:1592–1603CrossRefGoogle Scholar
  62. Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–777. doi: 10.1139/x03-241 CrossRefGoogle Scholar
  63. Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 north American species. Biomass Bioenergy 25:381–388. doi: 10.1016/s0961-9534(03)00033-3 CrossRefGoogle Scholar
  64. Larsen MJ, Jurgensen MF, Harvey AE (1978) N2 fixation associated with wood decayed by some common fungi in western Montana. Can J For Res 8:341–345. doi: 10.1139/x78-050 CrossRefGoogle Scholar
  65. Lombardi F, Cherubini P, Tognetti R, Cocozza C, Lasserre B, Marchetti M (2013) Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Ann For Sci 70:101–111CrossRefGoogle Scholar
  66. Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686. doi: 10.1126/science.1159792 PubMedCrossRefGoogle Scholar
  67. Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010) Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol Monogr 80:89–106. doi: 10.1890/09-0179.1 CrossRefGoogle Scholar
  68. McColl JG, Powers RF (1998) Decomposition of small diameter woody debris of red fir determined by nuclear magnetic resonance. Commun Soil Sci Plant Anal 29:2691–2704. doi: 10.1080/00103629809370144 CrossRefGoogle Scholar
  69. McKenney DW, Hutchinson MF, Kesteven JL, Venier LA (2001) Canada's plant hardiness zones revisited using modern climate interpolation techniques. Can J Plant Sci 81:129–143CrossRefGoogle Scholar
  70. Means JE, Cromack K Jr, MacMillan PC (1985) Comparison of decomposition models using wood density of Douglas-fir logs. Can J For Res 15:1092–1098. doi: 10.1139/x85-178 CrossRefGoogle Scholar
  71. Means JE, MacMillan PC, Cromack K Jr (1992) Biomass and nutrient content of Douglas-fir logs and other detrital pools in an old-growth forest, Oregon, U.S.a. Can J For Res 22:1536–1546. doi: 10.1139/x92-204 CrossRefGoogle Scholar
  72. Monleon VJ, Cromack K (1996) Long-term effects of prescribed underburning on litter decomposition and nutrient release in ponderosa pine stands in Central Oregon. For Ecol Manag 81:143–152. doi: 10.1016/0378-1127(95)03658-X CrossRefGoogle Scholar
  73. Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006) Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems 9:46–62. doi: 10.1007/s10021-004-0026-x CrossRefGoogle Scholar
  74. Moore TR, Trofymow JA, Prescott CE, Titus BD (2011) Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant Soil 339:163–175. doi: 10.1007/s11104-010-0563-3 CrossRefGoogle Scholar
  75. Moroni MT, Morris DM, Shaw C, Stokland JN, Harmon ME, Fenton NJ, Merganičová K, Merganič J, Okabe K, Hagemann U (2015) Buried wood: a common yet poorly documented form of deadwood. Ecosystems 18:605–628. doi: 10.1007/s10021-015-9850-4 CrossRefGoogle Scholar
  76. Næsset E (1999) Decomposition rate constants of Picea abies logs in southeastern Norway. Can J For Res 29:372–381. doi: 10.1139/x99-005 CrossRefGoogle Scholar
  77. Palviainen M, Laiho R, Mäkinen H, Finér L (2008) Do decomposing scots pine, Norway spruce, and silver birch stems retain nitrogen? Can J For Res 38:3047–3055. doi: 10.1139/x08-147 CrossRefGoogle Scholar
  78. Palviainen M, Finér L, Laiho R, Shorohova E, Kapitsa E, Vanha-Majamaa I (2010) Phosphorus and base cation accumulation and release patterns in decomposing scots pine, Norway spruce and silver birch stumps. For Ecol Manag 260:1478–1489. doi: 10.1016/j.foreco.2010.07.046 CrossRefGoogle Scholar
  79. Parkinson JA, Allen SE (1975) A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal 6:1–11. doi: 10.1080/00103627509366539 CrossRefGoogle Scholar
  80. Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364. doi: 10.1126/science.1134853 PubMedCrossRefGoogle Scholar
  81. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-128,
  82. Preston CM, Forrester PD (2004) Chemical and carbon-13 cross-polarization magic-angle spinning nuclear magnetic resonance characterization of logyard fines from British Columbia. J Environ Qual 33:767–777PubMedCrossRefGoogle Scholar
  83. Preston CM, Sollins P, Sayer BG (1990) Changes in organic components for fallen logs in old-growth Douglas-fir forests monitored by 13C nuclear magnetic resonance spectroscopy. Can J For Res 20:1382–1391. doi: 10.1139/x90-183 CrossRefGoogle Scholar
  84. Preston CM, Trofymow JA, Niu J, Fyfe J (1998) 13 CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. For Ecol Manag 111:51–68CrossRefGoogle Scholar
  85. Preston CM, Trofymow JA, CIDET Working Group (2000) Variability in litter quality and its relationship to litter decay in Canadian forests. Can J Bot 78:1269–1287. doi: 10.1139/b00-101 Google Scholar
  86. Preston CM, Nault JR, Trofymow JA, Smyth C (2009) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, Phenolics, and proximate fractions. Ecosystems 12:1053–1077. doi: 10.1007/s10021-009-9266-0 CrossRefGoogle Scholar
  87. Preston CM, Trofymow JA, Nault JR (2012) Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. Can J For Res 42:1153–1167. doi: 10.1139/x2012-076 CrossRefGoogle Scholar
  88. Pyle C, Brown MM (1999) Heterogeneity of wood decay classes within hardwood logs. For Ecol Manag 114:253–259. doi: 10.1016/S0378-1127(98)00356-9 CrossRefGoogle Scholar
  89. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  90. Risch AC, Jurgensen MF, Page-Dumroese DS, Schütz M (2013) Initial turnover rates of two standard wood substrates following land-use change in subalpine ecosystems in the Swiss alps. Can J For Res 43:901–910. doi: 10.1139/cjfr-2013-0109 CrossRefGoogle Scholar
  91. Rustad LE (1994) Element dynamics along a decay continuum in a red spruce ecosystem in Maine, USA. Ecology 75:867–879. doi: 10.2307/1939412 CrossRefGoogle Scholar
  92. Rustad LE, Cronan CS (1988) Element loss and retention during litter decay in a red spruce stand in Maine. Can J For Res 18:947–953. doi: 10.1139/x88-144 CrossRefGoogle Scholar
  93. Saunders MR, Fraver S, Wagner RG (2011) Nutrient concentration of down woody debris in mixedwood forests in Central Maine, USA. Silva Fenn 45:197–210CrossRefGoogle Scholar
  94. Setälä H, Marshall VG, Trofymow JA (1996) Influence of body size of soil fauna on litter decomposition and 15N uptake by poplar in a pot trial. Soil Biology and Biochemistry 28: 1661–1675. doi: 10.1016/S0038-0717(96)00252-0
  95. Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586–1593. doi: 10.2307/1940086 CrossRefGoogle Scholar
  96. Smith AC, Bhatti JS, Chen H, Harmon ME, Arp PA (2011) Modelling above- and below-ground mass loss and N dynamics in wooden dowels (LIDET) placed across north and central America biomes at the decadal time scale. Ecol Model 222:2276–2290. doi: 10.1016/j.ecolmodel.2010.09.018 CrossRefGoogle Scholar
  97. Smyth CE, Trofymow JA, Kurz WA, CIDET Working Group (2010) Decreasing uncertainty in CBM-CFS3 estimates of forest soil C sources and sinks through use of long-term data from the Canadian Intersite Decomposition Experiment. BC Information Report BC-X-422. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria.Google Scholar
  98. Smyth CE, Kurz WA, Trofymow JA (2011) Including the effects of water stress on decomposition in the carbon budget model of the Canadian Forest sector CBM-CFS3. Ecol Model 222:1080–1091. doi: 10.1016/j.ecolmodel.2010.12.005 CrossRefGoogle Scholar
  99. Sollins P (1982) Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington. Can J For Res 12:18–28. doi: 10.1139/x82-003 CrossRefGoogle Scholar
  100. Sollins P, Cline SP, Verhoeven T, Sachs D, Spycher G (1987) Patterns of log decay in old-growth Douglas-fir forests. Can J For Res 17:1585–1595. doi: 10.1139/x87-243 CrossRefGoogle Scholar
  101. Spano SD, Jurgensen MF, Larsen MJ, Harvey AE (1982) Nitrogen-fixing bacteria in Douglas-fir residue decayed byFomitopsis pinicola. Plant Soil 68:117–123. doi: 10.1007/BF02374731 CrossRefGoogle Scholar
  102. Spears JDH, Lajtha K (2004) The imprint of coarse woody debris on soil chemistry in the western Oregon cascades. Biogeochemistry 71:163–175. doi: 10.2307/4151491 CrossRefGoogle Scholar
  103. Spears JD, Holub SM, Harmon ME, Lajtha K (2003) The influence of decomposing logs on soil biology and nutrient cycling in an old-growth mixed coniferous forest in Oregon, U.S.a. Can J For Res 33:2193–2201. doi: 10.1139/x03-148 CrossRefGoogle Scholar
  104. Spies TA, Franklin JF, Thomas TB (1988) Coarse Woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69:1689–1702. doi: 10.2307/1941147 CrossRefGoogle Scholar
  105. Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  106. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Univ of California Press, BerkeleyGoogle Scholar
  107. Trofymow JA (1998b) Detrital carbon fluxes and microbial activity in successional Douglas-fir forests. Northwest Sci 72:51–53Google Scholar
  108. Trofymow JA, CIDET Working Group (1998a) CIDET—the Canadian Intersite Decomposition Experiment: Project and Site Establishment Report. BC Information Report BC-X-378. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC.Google Scholar
  109. Trofymow JA, Preston CM, Prescott CE (1995) Litter quality and its potential effect on decay rates of materials from Canadian forests. Water Air Soil Pollut 82:215–226CrossRefGoogle Scholar
  110. Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camirt C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804CrossRefGoogle Scholar
  111. Tuomi M, Laiho R, Repo A, Liski J (2011) Wood decomposition model for boreal forests. Ecol Model 222:709–718. doi: 10.1016/j.ecolmodel.2010.10.025 CrossRefGoogle Scholar
  112. Uju GC, Baines EF, Levy JF (1981) Nitrogen uptake by wick action in wood in soil contact. Journal of the Institute of Wood Science 9:23–26Google Scholar
  113. van der Wal A, de Boer W, Smant W, van Veen JA (2007) Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant Soil 301:189–201. doi: 10.1007/s11104-007-9437-8 CrossRefGoogle Scholar
  114. Vesterdal L (1999) Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Can J For Res 29:95–105. doi: 10.1139/x98-182 CrossRefGoogle Scholar
  115. Wall DH, Bradford MA, Trofymow JA, Behan-pelletier V, Bignell DE, Dangerfield J, Parton WJ, Rusek J, Voigt W (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Chang Biol 14:2661–2677PubMedCentralGoogle Scholar
  116. Weedon JT, Cornwell WK, Cornelissen JH, Zanne AE, Wirth C, Coomes DA (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56. doi: 10.1111/j.1461-0248.2008.01259.x PubMedCrossRefGoogle Scholar
  117. Withington CL, Sanford RL (2007) Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone. Soil Biol Biochem 39:68–75. doi: 10.1016/j.soilbio.2006.06.011 CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2016

Authors and Affiliations

  • C. E. Smyth
    • 1
    Email author
  • B. Titus
    • 1
  • J. A. Trofymow
    • 1
  • T. R. Moore
    • 2
  • C. M. Preston
    • 1
  • C. E. Prescott
    • 3
  • the CIDET Working Group
  1. 1.Natural Resources CanadaCanadian Forest ServiceVictoriaCanada
  2. 2.McGill UniversityQCCanada
  3. 3.University of British ColumbiaVancouverCanada

Personalised recommendations