Advertisement

Plant and Soil

, Volume 408, Issue 1–2, pp 327–342 | Cite as

Response of soil organic carbon to land-use change in central Brazil: a large-scale comparison of Ferralsols and Acrisols

  • S. Strey
  • J. BoyEmail author
  • R. Strey
  • O. Weber
  • G. Guggenberger
Regular Article

Abstract

Background and aims

The southeastern part of the Amazon region is one of the largest agricultural frontiers in the world, leading to extensive land-use change. This paper provides evidence for the impacts of land-use change on soil organic carbon (OC) stocks along a large scale for Ferralsols and Acrisols including subsoil.

Methods

We took soil samples to 100 cm depth for native vegetation, pasture and crop-field along a 1000 km agricultural transect in central Brazil to determine OC stocks and, by using a stable isotope approach, losses of forest-derived OC.

Results

At the scale of individual plots, soil OC stocks indicate a highly heterogeneous response to land-use change (e.g. in Ferralsols in 0–30 cm from −45 % to +57 % Mg OC ha−1 after conversion to pasture), but relatively minor responses when considering the complete transect (i.e. no significant OC changes for similar land-use type). Acrisols evidenced a slower decline of forest-derived OC and simultaneously a faster accumulation of pasture-derived OC than Ferralsols. Surprisingly, the impact of land-use change was more pronounced in the subsoil.

Conclusion

Our results emphasize the role of subsoils on carbon cycling which has been previously underestimated, but may also raise doubts whether OC stocks in soil is an appropriate parameter to assess the impacts of land-use conversion on climate change.

Keywords

Land-use change Soil organic carbon Tropical soils Amazon Large-scale 

Notes

Acknowledgment

This study was carried out in the framework of the integrated project CarBioCial funded by the German Ministry of Education and Research (BMBF) under the grant number 01LL0902F. We express our gratitude to all involved stakeholders and farmers for their professional support and cooperation to realize our studies, and we highly appreciate the trustful partnership of UFTM. Furthermore, we sincerely would like to thank Silke Bokeloh for excellent laboratory work, Steffen Söffker for important support in the field, and all our colleges from CarBioCial for effective interdisciplinary cooperation and stimulating discussions, and particularly Stefan Hohnwald and Michael Klinger for project coordination. Finally we want to thank the two anonymous reviewers and Robert D. McCulloch who helped us to further improve this study.

Supplementary material

11104_2016_2901_MOESM1_ESM.docx (141 kb)
ESM 1 (DOCX 140 kb)

References

  1. Basile-Doelsch I, Brun T, Borschneck D, Masion A, Marol C, Balesdent J (2009) Effect of landuse on organic matter stabilized in organomineral complexes: a study combining density fractionation, mineralogy and δ13C. Geoderma 151:77–86. doi: 10.1016/j.geoderma.2009.03.008 CrossRefGoogle Scholar
  2. Batjes NH (2005) Organic carbon stocks in the soils of Brazil. Soil Use Manag 21:22–24. doi: 10.1079/SUM2005286 CrossRefGoogle Scholar
  3. Batjes N, Dijkshoorn J (1999) Carbon and nitrogen stocks in the soils of the Amazon region. Geoderma 89:273–286. doi: 10.1016/S0016-7061(98)00086-X CrossRefGoogle Scholar
  4. Batlle-Bayer L, Batjes NH, Bindraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric Ecosyst Environ 137:47–58. doi: 10.1016/j.agee.2010.02.003 CrossRefGoogle Scholar
  5. Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res 86:237–245. doi: 10.1016/j.still.2005.02.023 CrossRefGoogle Scholar
  6. Bernoux M, Cerri CC, Neill C, de Moraes JF (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58. doi: 10.1016/S0016-7061(97)00096-7 CrossRefGoogle Scholar
  7. Bernoux M, da Conceição Santana Carvalho M, Volkoff B, Cerri CC (2002) Brazil’s soil carbon stocks. Soil Sci Soc Am J 66:888–896CrossRefGoogle Scholar
  8. Boeni M, Bayer C, Dieckow J, Conceição PC, Dick DP, Knicker H, Salton JC, Macedo MCM (2014) Organic matter composition in density fractions of Cerrado Ferralsols as revealed by CPMAS 13C NMR: influence of pastureland, cropland and integrated crop-livestock. Agric Ecosyst Environ 190:80–86. doi: 10.1016/j.agee.2013.09.024 CrossRefGoogle Scholar
  9. Brando PM, Coe MT, DeFries R, Azevedo A (2013) Ecology, economy and management of an agroindustrial frontier landscape in the Southeast Amazon. Philos Trans R Soc Lond Ser B Biol Sci 368:20120152. doi: 10.1098/rstb.2012.0152 CrossRefGoogle Scholar
  10. Braz SP, Urquiaga S, Alves BJR, Jantalia CP, Guimarães AP, dos Santos CA, dos Santos SC, Machado Pinheiro ÉF, Boddey RM (2013) Soil carbon stocks under productive and degraded pastures in the Brazilian Cerrado. Soil Sci Soc Am J 77:914–923. doi: 10.2136/sssaj2012.0269 CrossRefGoogle Scholar
  11. Buol SW, Eswaran H (2000) Oxisols Adv Agron 68:151–197CrossRefGoogle Scholar
  12. Carvalheiro K, Nepstad D (1996) Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia. Plant Soil 279–285Google Scholar
  13. Conen F, Zerva A, Arrouays D, Jolivet C, Jarvis PG, Grace J, Mencuccini M (2005) The carbon balance of forest soils: detectability of changes in soil carbon stocks in temperate and boreal forests. SEB Exp Biol Ser:235–249Google Scholar
  14. D’Andréa AF, Naves Silva ML, Curi N, Guimarães Guilherme LR, Fonseca A, Leandro M, Silva N (2004) Carbon and nitrogen storage, and inorganic nitrogen forms in a soil under different management systems. Pesqui Agropecu Bras 39:179–186. doi: 10.1590/S0100-204X2004000200012 CrossRefGoogle Scholar
  15. Da Silva J, Resck DV, Corazza E, Vivaldi L (2004) Carbon storage in clayey oxisol cultivated pastures in the “Cerrado” region. Brazil Agric Ecosyst Environ 103:357–363. doi: 10.1016/j.agee.2003.12.007 CrossRefGoogle Scholar
  16. Davidson E, Janssens I (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. doi: 10.1038/nature04514 CrossRefPubMedGoogle Scholar
  17. De Camargo P, Trumbore SE, Martinelli LA, Davidson EA, Nepstad DC, Victoria RL (1999) Soil carbon dynamics in regrowing forest of estern Amazonia. Glob Chang Biol 5:693–702CrossRefGoogle Scholar
  18. Denef K, Zotarelli L, Boddey RM, Six J (2007) Microaggregate-associated carbon as a diagnostic fraction for managemen-induced changes in soil organic carbon in two Oxisols. Soil Biol Biochem 39:1165–1172. doi: 10.1016/j.soilbio.2006.12.024 CrossRefGoogle Scholar
  19. Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103:365–373. doi: 10.1016/j.agee.2003.12.008 CrossRefGoogle Scholar
  20. Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kögel-Knabner I (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a Southern Brazil Acrisol managed under no-tillage for 17 years. Soil Tillage Res 81:87–95. doi: 10.1016/j.still.2004.05.003 CrossRefGoogle Scholar
  21. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Glob Chang Biol 17:1658–1670. doi: 10.1111/j.1365-2486.2010.02336.x CrossRefGoogle Scholar
  22. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796. doi: 10.1111/j.1365-2486.2012.02665.x CrossRefGoogle Scholar
  23. Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Piñeiro G (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob Chang Biol 18:3237–3251. doi: 10.1111/j.1365-2486.2012.02761.x CrossRefGoogle Scholar
  24. Ellert, B.H., Bettany, J.R. (1995) Calculation of organic matter and nutrients stored in soils under contrastin managmenet regimes. Can J Soil Sci 529–538.Google Scholar
  25. Fearnside PM (2007) Brazil’s Cuiabá- Santarém (BR-163) Highway: the environmental cost of paving a soybean corridor through the Amazon. Environ Manag 39:601–614. doi: 10.1007/s00267-006-0149-2 CrossRefGoogle Scholar
  26. Fearnside PM (2012) The theoretical battlefield_carbon accounting for the carbon benefits of maintaining brazils Amazon forest. Futur Sci Gr 145–148Google Scholar
  27. Fearnside PM, Righi CA, Graça PMLDA, Keizer EWH, Cerri CC, Nogueira EM, Barbosa RI (2009) Biomass and greenhouse-gas emissions from land-use change in Brazil’s Amazonian “arc of deforestation”: the states of Mato Grosso and Rondônia. For Ecol Manag 258:1968–1978. doi: 10.1016/j.foreco.2009.07.042 CrossRefGoogle Scholar
  28. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280. doi: 10.1038/nature06275 CrossRefPubMedGoogle Scholar
  29. Fujisaki K, Perrin A-S, Desjardins T, Bernoux M, Balbino LC, Brossard M (2015) From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Glob Chang Biol. doi: 10.1111/gcb.12906 PubMedGoogle Scholar
  30. Harrison RB, Footen PW, Strahm BD (2011) Deep soil horizons: contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change. For Sci 57:67–76Google Scholar
  31. IBGE - Instituto Brasileiro de Geografia e Estatistica (2012) Manual Técnico da Vegetação BrasileiraGoogle Scholar
  32. INPE - Instituto National de Pesiquisas Espasiais (2014) Projeto Prodes – Monitoramento da floresta Amazonica Brasilieira por satélite Available at: http://www.obt.inpe.br/prodes/prodes_1988_2014.htm (accessed at 20.05.2015)
  33. IUSS Working Group WRB (2014) World reference base for soil resources 2014. Reports, World Soil ResourcesGoogle Scholar
  34. John B, Ludwig B, Flessa H (2003) Carbon dynamics determined by natural 13C abundance in microcosm experiments with soils from long-term maize and rye monocultures. Soil Biol Biochem 35:1193–1202. doi: 10.1016/S0038-0717(03)00180-9 CrossRefGoogle Scholar
  35. Koutika L-S, Bartoli F, Andreux F, Cerri CC, Burtin G, Choné T, Philippy R (1997) Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in the Eastern Amazon Basin. Geoderma 76:87–112. doi: 10.1016/S0016-7061(96)00105-X CrossRefGoogle Scholar
  36. Lapola DM, Martinelli L a, Peres CA, Ometto JPHB, Ferreira ME, Nobre C a, Aguiar APD, Bustamante MMC, Cardoso MF, Costa MH, Joly C a, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG (2013) Pervasive transition of the Brazilian land-use system. Nat Clim Chang 4:27–35. doi: 10.1038/nclimate2056 CrossRefGoogle Scholar
  37. Maia SMF, Ogle SM, Cerri CEP, Cerri CC (2009) Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 149:84–91. doi: 10.1016/j.geoderma.2008.11.023 CrossRefGoogle Scholar
  38. Mann LK (1986) Changes in soil carbon storage after cultivation. Soil Sci 142:279–288CrossRefGoogle Scholar
  39. Marchão RL, Becquer T, Brunet D, Balbino LC, Vilela L, Brossard M (2009) Carbon and nitrogen stocks in a Brazilian clayey oxisol: 13-year effects of integrated crop–livestock management systems. Soil Tillage Res 103:442–450. doi: 10.1016/j.still.2008.11.002 CrossRefGoogle Scholar
  40. Matuszak, A. (2010) Differences between arithmetic, geometric, and harmonic means http://economistatlarge.com/finance/applied-finance/differences-arithmetic-geometric-harmonic-means (accessed 20.05.2015)
  41. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56. doi: 10.1007/s10533-005-0712-6 CrossRefGoogle Scholar
  42. Moraes JFL, Volkoff B, Cerri CC, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma 70:63–81CrossRefGoogle Scholar
  43. Mosquera O, Buurman P, Ramirez BL, & Amezquita MC (2012) Carbon stocks and dynamics under improved tropical pasture and silvopastoral systems in Colombian Amazonia. Geoderma 189–190:81–86. doi: 10.1016/j.geoderma.2012.04.022
  44. Murage EW, Voroney P, Beyaert RP (2007) Turnover of carbon in the free light fraction with and without charcoal as determined using the 13C natural abundance method. Geoderma 138:133–143. doi: 10.1016/j.geoderma.2006.11.002 CrossRefGoogle Scholar
  45. Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8:105–123CrossRefGoogle Scholar
  46. Numata I, Chadwick OA, Roberts D a, Schimel JP, Sampaio FF, Leonidas FC, Soares JV (2007) Temporal nutrient variation in soil and vegetation of post-forest pastures as a function of soil order, pasture age, and management, Rondônia. Brazil Agric Ecosyst Environ 118:159–172. doi: 10.1016/j.agee.2006.05.019 CrossRefGoogle Scholar
  47. Ota M, Nagai H, Koarashi J (2013) Root and dissolved organic carbon controls on subsurface soil carbon dynamics: a model approach. J Geophys Res Biogeosci 118:1646–1659. doi: 10.1002/2013JG002379 CrossRefGoogle Scholar
  48. Patry C, Davidson R, Lucotte M, Béliveau A (2013) Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region. Brazilian Amazon Sci Total Environ 458-460:228–237. doi: 10.1016/j.scitotenv.2013.04.037 CrossRefPubMedGoogle Scholar
  49. Paul S, Flessa H, Veldkamp E, López-Ulloa M (2008) Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry 87:247–263. doi: 10.1007/s10533-008-9182-y CrossRefGoogle Scholar
  50. Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi: 10.1016/j.geoderma.2012.08.003 CrossRefGoogle Scholar
  51. Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440. doi: 10.5194/bg-8-1415-2011 CrossRefGoogle Scholar
  52. Roscoe R, Buurman P (2003) Tillage effects on soil organic matter in density fractions of a Cerrado oxisol. Soil Tillage Res 70:107–119. doi: 10.1016/S0167-1987(02)00160-5 CrossRefGoogle Scholar
  53. Roscoe R, Buurman P, Velthorst E, Vasconcellos C (2001) Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado’s oxisol. Geoderma 104:185–202. doi: 10.1016/S0016-7061(01)00080-5 CrossRefGoogle Scholar
  54. Rumpel C, Kögel-Knabner I (2010) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi: 10.1007/s11104-010-0391-5 CrossRefGoogle Scholar
  55. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci U S A 108:9899–9904. doi: 10.1073/pnas.1019576108 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schwendenmann L, Pendall E (2006) Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama: evidence from soil carbon fractionation and stable isotopes. Plant Soil 288:217–232. doi: 10.1007/s11104-006-9109-0 CrossRefGoogle Scholar
  57. Smith P, Davies CA, Ogle S, Zanchi G, Bellarby J, Bird N, Boddey RM, McNamara NP, Powlson D, Cowie A, Noordwijk M, Davis SC, Richter DDB, Kryzanowski L, Wijk MT, Stuart J, Kirton A, Eggar D, Newton-Cross G, Adhya TK, Braimoh AK (2012) Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob Chang Biol 18:2089–2101. doi: 10.1111/j.1365-2486.2012.02689.x CrossRefGoogle Scholar
  58. Still CJ, Berry JA, Ribas-Carbo M, Helliker BR (2003) The contribution of C3 and C4 plants to the carbon cycle of a tallgrass prairie: an isotopic approach. Oecologia 136:347–359. doi: 10.1007/s00442-003-1274-8 CrossRefPubMedGoogle Scholar
  59. Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Courcelles VDRD, Singh K, Wheeler I, Abbott L, Angers D a, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99. doi: 10.1016/j.agee.2012.10.001 CrossRefGoogle Scholar
  60. Twongyirwe R, Sheil D, Majaliwa JGM, Ebanyat P, Tenywa MM, van Heist M, Kumar L (2013) Variability of soil organic carbon stocks under different land uses: a study in an afro-montane landscape in Southwestern Uganda. Geoderma 193-194:282–289. doi: 10.1016/j.geoderma.2012.09.005 CrossRefGoogle Scholar
  61. West LT, Beinroth FH, Summer ME, Kang BT (1998) Ultsiol; characteristics and impacts on society. Adv Agron 63:163–224Google Scholar
  62. Yoneyama T, Okada H, Chongpraditnum P, Ando S, Prasertsak P, Hirai K, Division SS, Buri S, Crops F (2006) Effects of vegetation and cultivation on δ13C values of soil organic carbon1 and estimation of its turnover in Asian tropics: a case study in Thailand. Soil Sci Plant Nutr 52:95–102. doi: 10.1111/j.1747-0765 CrossRefGoogle Scholar
  63. Zinn YL, Lal R, Resck DVS (2005a) Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 127:168–173. doi: 10.1016/j.geoderma.2005.02.010 CrossRefGoogle Scholar
  64. Zinn YL, Lal R, Resck DVSS (2005b) Changes in soil organic carbon stocks under agriculture in Brazil. Soil Tillage Res 84:28–40. doi: 10.1016/j.geoderma.2005.02.010 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • S. Strey
    • 1
  • J. Boy
    • 1
    Email author
  • R. Strey
    • 1
  • O. Weber
    • 2
  • G. Guggenberger
    • 1
  1. 1.Institute of Soil ScienceLeibniz Universität HannoverHanoverGermany
  2. 2.Departamento de Solos e Engenharia RuralUniversidade Federal do Mato Grosso – UFMT/FAMEVCuiabáBrazil

Personalised recommendations