Advertisement

Plant and Soil

, Volume 407, Issue 1–2, pp 91–107 | Cite as

Direct acquisition of organic N by white clover even in the presence of inorganic N

  • Weronika Czaban
  • Sandra Jämtgård
  • Torgny Näsholm
  • Jim Rasmussen
  • Mogens Nicolaisen
  • Inge S. Fomsgaard
Regular Article

Abstract

Aim

This study was conducted to answer the question of whether clover can absorb asparagine in the presence and absence of inorganic nitrogen, as well as to determine the resulting concentration of post-uptake compounds closely involved in asparagine metabolism.

Methods

Clover was grown at two asparagine concentrations (10 μM and 1 mM) supplied in both the absence and presence of ammonium nitrate. Using dual-labeled 13C15N-asparagine, the uptake rate was analyzed via bulk 15N and 13C excess and the detection of intact 13C15N-asparagine in white clover.

Results

The results from the two methods indicated greater utilization of 13C15N-asparagine in the 10 μM treatment than in the 1 mM treatment. The 13C15N-asparagine uptake rate was higher when 13C15N-asparagine was provided alone than when it was supplemented with inorganic nitrogen. Up to nine times lower uptake rates were obtained when intact 13C15N-asparagine was measured than when bulk 15N and 13C excess were analyzed. The labeled amino acids that are closely related to 13C15N-asparagine metabolism (aspartic acid, glutamic acid and glutamine) were detected in clover roots and shoots.

Conclusions

Using two different methods, white clover’s potential to absorb intact asparagine, even in the presence of inorganic nitrogen, was confirmed. The dual-methodology approach employed in this study demonstrates how the post-uptake metabolism can affect quantification of amino acid uptake.

Keywords

Amino acids Inorganic nitrogen Uptake White clover Asparagine metabolism 

Notes

Acknowledgments

This work was funded by Aarhus University in Denmark (project no. 15163). We gratefully acknowledge Annika Johansson and Thomas Moritz at the Swedish Metabolmics Centre for the use of the non-published amino acid analysis method. We also would like to acknowledge Andreas de Neergaard from the University of Copenhagen, Denmark for providing us with the hydroponic setup and assisting us with developing the conditions for plant growth.

Compliance with ethical standards

Funding

This work was funded by Aarhus University in Denmark (project no. 15,163).

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11104_2016_2896_MOESM1_ESM.docx (16 kb)
Online Resource 1 (DOCX 16 kb)
11104_2016_2896_MOESM2_ESM.xlsx (25 kb)
Online Resource 2 (XLSX 25 kb)
11104_2016_2896_MOESM3_ESM.xlsx (16 kb)
Online Resource 3 (XLSX 15 kb)

References

  1. Armenta JM et al. (2010) Sensitive and rapid method for amino acid quantitation in malaria biological samples using AccQ.Tag Ultra Performance Liquid Chromatography-Electrospray Ionization-MS/MS with Multiple Reaction Monitoring. Anal Chem 82:548–558. doi: 10.1021/ac901790q CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cambui CA, Svennerstam H, Gruffman L, Nordin A, Ganeteg U, Näsholm T (2011) Patterns of plant biomass partitioning depend on nitrogen source. PLoS One 6:e19211. doi: 10.1371/journal.pone.0019211 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Croghan C, Egeghy PP (2003) Methods of dealing with values below the limit of detection using SASGoogle Scholar
  4. El-Naggar A, de Neergaard A, El-Araby A, Hogh-Jensen H (2009) Simultaneous uptake of multiple amino acids by wheat. J Plant Nutr 32:725–740. doi: 10.1080/01904160902787842 CrossRefGoogle Scholar
  5. Gioseffi E, de Neergaard A, Schjoerring ,JK (2012) Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences 9:1509–1518. doi: 10.5194/bg-9-1509-2012 CrossRefGoogle Scholar
  6. Gold V, Loening KL, McNaught AD, Sehmi P (1987) In: V. KLL, Mcnaught AD, Sehmi P (eds) Compendium of chemical terminology IUPAC International Union of Pure And Applied Chemistry Recommendations Gold. . Compendium of Chemical Terminology, IupacGoogle Scholar
  7. Griffith GS, Cresswell A, Jones S, Allen DK (2000) The nitrogen handling characteristics of white clover (Trifolium repens L.) cultivars and a perennial ryegrass (Lolium perenne L.) cultivar. J Exp Bot 51:1879–1892. doi: 10.1093/jexbot/51.352.1879 CrossRefPubMedGoogle Scholar
  8. Gylfadottir T, Helgadottir A, Hogh-Jensen H (2007) Consequences of including adapted white clover in Northern European grassland: transfer and deposition of nitrogen. Plant Soil 297:93–104. doi: 10.1007/s11104-007-9323-4 CrossRefGoogle Scholar
  9. Herrmann B, Mattsson M, Fuhrer J, Schjoerring JK (2002) Leaf-atmosphere NH3 exchange of white clover (Trifolium repens L.) in relation to mineral N nutrition and symbiotic N2 fixation. J Exp Bot 53:139–146. doi: 10.1093/jexbot/53.366.139 CrossRefPubMedGoogle Scholar
  10. Hildebrandt TM, Nesi AN, Araujo WL, HP B (2015) Amino acid catabolism in plants. Mol Plant 8:1563–1579. doi: 10.1016/j.molp.2015.09.005 CrossRefPubMedGoogle Scholar
  11. Hill PW et al. (2011) Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One 6:e19220. doi: 10.1371/journal.pone.0019220 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hogh-Jensen H, Schjoerring JK (2001) Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys Soil Biol Biochem 33:439–448 doi: 10.1016/s0038-0717(00)00183-8
  13. Jämtgård S, Näsholm T, Huss-Danell K (2008) Characteristics of amino acid uptake in barley. Plant Soil 302:221–231. doi: 10.1007/s11104-007-9473-4 CrossRefGoogle Scholar
  14. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review Agron Sustain Dev 32:329–364. doi: 10.1007/s13593-011-0056-7 CrossRefGoogle Scholar
  15. Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biol Biochem 37:413–423. doi: 10.1016/j.soilbio.2004.08.008 CrossRefGoogle Scholar
  16. Krapp A et al. (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157:1255–1282. doi: 10.1104/pp.111.179838 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Laine P, Bigot J, Ourry A, Boucaud J (1994) Effects of low-temperature on nitrate uptake, and xylem and phloem flows of nitrogen, in Secale cereale L. And Brassica napus L. New Phytol 127:675–683. doi: 10.1111/j.1469-8137.1994.tb02970.x CrossRefGoogle Scholar
  18. Lea PJ, Sodek L, Parry MAJ, Shewry R, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26. doi: 10.1111/j.1744-7348.2006.00104.x CrossRefGoogle Scholar
  19. Leidi EO, RodrÍGuez-Navarro DN (2000) Nitrogen and phosphorus availability limit N2 fixation in bean. New Phytol 147:337–346. doi: 10.1046/j.1469-8137.2000.00703.x CrossRefGoogle Scholar
  20. Lesuffleur F, J-B C (2010a) Characterisation of root amino acid exudation in white clover. (Trifolium repens L) Plant Soil 333:191–201. doi: 10.1007/s11104-010-0334-1
  21. Lesuffleur F, J-B C (2010b) Characterisation of root amino acid exudation in white clover. (Trifolium repens L) Plant and Soil 333:191–201. doi: 10.1007/s11104-010-0334-1
  22. Lesuffleur F, Paynel F, Bataillé M-P, Deunff E, J-B C (2007) Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species. Plant Soil 294:235–246. doi: 10.1007/s11104-007-9249-x CrossRefGoogle Scholar
  23. Louarn G, Pereira-Lopès E, Fustec J, Mary B, Voisin A-S, de Faccio CP, Gastal F (2014) The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil. doi: 10.1007/s11104-014-2354-8 Google Scholar
  24. Macduff JH, Abberton MT, Raistrick N, Michaelson-Yeates ,TPT (2002) Low nitrate uptake white clover genotype - nitrogen relations of a low nitrate uptake inbred line of white clover. (Trifolium repens L) Plant and Soil 238:191–204. doi: 10.1023/a:1014456622446
  25. McFarland JW, Ruess RW, Kielland K, Pregitzer K, Hendrick R, Allen M (2010) Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4(+). Ecosystems 13:177–193. doi: 10.1007/s10021-009-9309-6 CrossRefGoogle Scholar
  26. Näsholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916. doi: 10.1038/31921 CrossRefGoogle Scholar
  27. Näsholm T, Huss-Danell K, Hogberg P (2000) Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81:1155–1161. doi: 10.1890/0012-9658(2000)081[1155:uoonit]2.0.co;2 CrossRefGoogle Scholar
  28. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48. doi: 10.1111/j.1469-8137.2008.02751.x CrossRefPubMedGoogle Scholar
  29. Nordin A, Schmidt IK, Shaver GR (2004) Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85:955–962. doi: 10.1890/03-0084 CrossRefGoogle Scholar
  30. Öhlund J, Näsholm T (2001) Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol 21:1319–1326CrossRefPubMedGoogle Scholar
  31. Oldroyd GED, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576. doi: 10.1038/nrm1424 CrossRefPubMedGoogle Scholar
  32. Paynel F, Cliquet JB (2003) N transfer from white clover to perennial ryegrass, via exudation of nitrogenous compounds. Agronomie 23:503–510. doi: 10.1051/agro:2003022 CrossRefGoogle Scholar
  33. Paynel F, Murray PJ, Cliquet JB (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass. Plant Soil 229:235–243. doi: 10.1023/a:1004877214831 CrossRefGoogle Scholar
  34. Pedersen HA, Kudsk P, Fiehn O, Fomsgaard IS (2013) The response of Arabidopsis to co-cultivation with clover investigating plant-plant interactions with metabolomics. In: Beck JJ, Coats JR, Duke SO, Koivunen ME (eds) Pest management with natural products, ACS Symposium Series, vol 1141. Amer Chemical Soc, Washington, pp. 189–201CrossRefGoogle Scholar
  35. Persson J, Näsholm T (2001) A GC-MS method for determination of amino acid uptake by plants. Physiol Plant 113:352–358. doi: 10.1034/j.1399-3054.2001.1130308.x CrossRefPubMedGoogle Scholar
  36. Persson J, Hogberg P, Ekblad A, Hogberg MN, Nordgren A, Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257. doi: 10.1007/s00442-003-1334-0 CrossRefPubMedGoogle Scholar
  37. Rasmussen J, Sauheitl L, Eriksen J, Kuzyakov Y (2010) Plant uptake of dual-labeled organic N biased by inorganic C uptake: results of a triple labeling study. Soil Biol Biochem 42:524–527. doi: 10.1016/j.soilbio.2009.11.032 CrossRefGoogle Scholar
  38. Rasmussen J, Gylfadottir T, Loges R, Eriksen J, Helgadottir A (2013) Spatial and temporal variation in N transfer in grass-white clover mixtures at three Northern European field sites. Soil Biol Biochem 57:654–662. doi: 10.1016/j.soilbio.2012.07.004 CrossRefGoogle Scholar
  39. Sauheitl L, Glaser B, Weigelt A (2009a) Advantages of compound-specific stable isotope measurements over bulk measurements in studies on plant uptake of intact amino acids. Rapid Commun Mass Sp 23:3333–3342. doi: 10.1002/rcm.4255 CrossRefGoogle Scholar
  40. Sauheitl L, Glaser B, Weigelt A (2009b) Uptake of intact amino acids by plants depends on soil amino acid concentrations. Environ Exp Bot 66:145–152. doi: 10.1016/j.envexpbot.2009.03.009 CrossRefGoogle Scholar
  41. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi: 10.1890/03-8002 CrossRefGoogle Scholar
  42. Ta TC, Joy KW, Ireland RJ (1984) Amino acid metabolism in Pea Pisum sativum cultivar Little Marvel leaves utilization of nitrogen from amide and amino groups of nitrogen-15 labeled asparagine. Plant Physiol 74:822–826CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thornton B, Robinson D (2005) Uptake and assimilation of nitrogen from solutions containing multiple N sources. Plant Cell Environ 28:813–821. doi: 10.1111/j.1365-3040.2005.01332.x CrossRefGoogle Scholar
  44. Tillard P, Passama L, Gojon A (1998) Are phloem amino, acids involved in the shoot to root control of NO3 uptake in Ricinus communis plants? J Exp Bot 49:1371–1379. doi: 10.1093/jexbot/49.325.1371 Google Scholar
  45. Varin S, Cliquet J-B, Personeni E, Avice J-C, Lemauviel-Lavenant S (2010) How does sulphur availability modify N acquisition of white clover (Trifolium repens L.)? J Exp Bot 61:225–234. doi: 10.1093/jxb/erp303 CrossRefPubMedGoogle Scholar
  46. Warren CR (2012) Post-uptake metabolism affects quantification of amino acid uptake. New Phytol 193:522–531. doi: 10.1111/j.1469-8137.2011.03933.x CrossRefPubMedGoogle Scholar
  47. Weigelt A, King R, Bol R, Bardgett RD (2003) Inter-specific variability in organic nitrogen uptake of three temperate grassland species. J Plant Nutr Soil Sc 166:606–611. doi: 10.1002/jpln.200320322 CrossRefGoogle Scholar
  48. Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635. doi: 10.1007/s00442-004-1765-2 CrossRefPubMedGoogle Scholar
  49. Winters AL, Minchin FR, Davies Z, Kingston-Smith AH, Theodorou MK, Griffith GW, RJ M (2004) Effects of manipulating the protein content of white clover on silage quality. Anim Feed Sci Technol 116:319–331. doi: 10.1016/j.anifeedsci.2004.07.002 CrossRefGoogle Scholar
  50. Zhang Q, Marsolais F (2014) Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis. Phytochemistry 99:36–43. doi: 10.1016/j.phytochem.2013.12.020 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Weronika Czaban
    • 1
  • Sandra Jämtgård
    • 2
  • Torgny Näsholm
    • 2
    • 3
  • Jim Rasmussen
    • 4
  • Mogens Nicolaisen
    • 1
  • Inge S. Fomsgaard
    • 1
  1. 1.Department of Agroecology, Faculty of Science and TechnologyAarhus UniversitySlagelseDenmark
  2. 2.Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
  3. 3.Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
  4. 4.Department of Agroecology, Faculty of Science and TechnologyAarhus UniversityTjeleDenmark

Personalised recommendations