Plant and Soil

, Volume 406, Issue 1–2, pp 201–217 | Cite as

Opportunity costs for maize associated with localised application of sewage sludge derived fertilisers, as indicated by early root and phosphorus uptake responses

  • Camilla Lemming
  • Astrid Oberson
  • Andreas Hund
  • Lars Stoumann Jensen
  • Jakob Magid
Regular Article



Phosphorus recycling from waste and localised placement of fertilisers can potentially improve sustainable P management in agriculture. However, knowledge about root and plant P uptake responses to placement of complex waste-derived fertilisers is lacking.


Sewage sludge (SS) and sewage sludge ash (ASH) were tested against triple superphosphate (TSP) in a rhizobox setup where maize shoot and root growth and architecture were followed for 30 days. The three P sources were either mixed homogenously into the soil (slightly acidic, low in available P and moderate P fixing capacity; labelled with 33P) or localised in a patch close to the seed.


Localisation of TSP and SS both induced increased root length density in and around the fertiliser patch. For TSP this was followed by enhanced dry matter yield and fertiliser P uptake compared to the mixed source. In contrast, P uptake from SS was not enhanced by the localisation, and while the uptake from the seed was similar, the uptake from soil was lower probably due to weaker root development in the remaining soil. No root response was found for localised ASH, whereas mixed ASH more than doubled dry matter yield and P uptake in comparison.


Young maize plants’ responses to fertiliser localisation imply opportunity costs and under the given soil conditions, localisation of SS and ASH (contrary to TSP) did not entail an overall benefit for the plant.


Fertiliser placement Root growth Sewage sludge Sewage sludge ash Rhizobox Maize 



Triple super phosphate


Sewage sludge


Sewage sludge ash

TSPloc and TSPmix

Treatments with localised and mixed triple super phosphate respectively.

SSloc and SSmix

Treatments with localised and mixed sewage sludge respectively.

ASHloc and ASHmix

Treatments with localised and mixed sewage sludge ash respectively.


Control treatment with no amendment of P.


P derived from.


P uptake efficiency of the roots


Days after sowing.



The authors would like to thank Sean Case for proofreading of the manuscript. The study was conducted as part of the research projects IRMAR (funded by the Danish Council for Strategic Research); RoCo (part of the Organic RDD 2 programme, which is coordinated by International Centre for Research in Organic Food Systems (ICROFS) and has received grants from the Green Growth and Development programme (GUDP) under the Danish Ministry of Food, Agriculture and Fisheries.); and IMPROVE-P (financial support for this project was provided by transnational funding bodies, being partners of the FP7 ERA-net project, CORE Organic Plus, and the cofund from the European commission).

Supplementary material

11104_2016_2865_MOESM1_ESM.docx (11.4 mb)
ESM 1 (DOCX 11709 kb)


  1. Achat DL, Daumer M-L, Sperandio M et al (2014) Solubility and mobility of phosphorus recycled from dairy effluents and pig manures in incubated soils with different characteristics. Nutr Cycl Agroecosyst 99:1–15. doi: 10.1007/s10705-014-9614-0 CrossRefGoogle Scholar
  2. Bergmann W, Neubert P (1976) Pflanzendiagnose und pflanzenanalyse. Zur ermittlung von ernährungsstörungen und des ernährungszustandes der kulturpflanzenGoogle Scholar
  3. Bierman PM, Rosen CJ, Bloom PR, Nater EA (1995) Soil solution chemistry of sewage-sludge incinerator ash and phosphate fertilizer amended soil. J Environ Qual 24:279. doi: 10.2134/jeq1995.00472425002400020010x CrossRefGoogle Scholar
  4. Bisseling T, Scheres B (2014) Nutrient computation for root architecture. Science 346:300–301. doi: 10.1126/science.1260942 CrossRefPubMedGoogle Scholar
  5. Bittman S, Liu A, Hunt DE et al (2012) Precision placement of separated dairy sludge improves early phosphorus nutrition and growth in corn (Zea mays L.). J Environ Qual 41:582–591. doi: 10.2134/jeq2011.0284 CrossRefPubMedGoogle Scholar
  6. Bramley H, Tyerman SD, Turner DW, Turner NC (2011) Root growth of lupins is more sensitive to waterlogging than wheat. Funct Plant Biol 38:910–918. doi: 10.1071/FP11148 CrossRefGoogle Scholar
  7. Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–584. doi: 10.1078/0176-1617-0774 CrossRefGoogle Scholar
  8. Chassot A, Richner W (2002) Root characteristics and phosphorus uptake of maize seedlings in a bilayered soil. Agron J 94:118–127. doi: 10.2134/agronj2002.1180 CrossRefGoogle Scholar
  9. Cohen Y (2009) Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid. Environ Technol 30:1215–1226. doi: 10.1080/09593330903213879 CrossRefPubMedGoogle Scholar
  10. Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11:82–87. doi: 10.1016/j.pbi.2007.10.003 CrossRefPubMedGoogle Scholar
  11. Drew M (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490CrossRefGoogle Scholar
  12. Fardeau JC, Guiraud G, Marol C (1996) The role of isotopic techniques on the evaluation of the agronomic effectiveness of P fertilizers. Fertil Res 45:101–109. doi: 10.1007/BF00790659 CrossRefGoogle Scholar
  13. Fransen B, de Kroon H, de Kovel CGF, van den Bosch F (1999) Disentangling the effects of root foraging and inherent growth rate on plant biomass accumulation in heterogeneous environments: A modelling study. Ann Bot 84:305–311. doi: 10.1006/anbo.1999.0921 CrossRefGoogle Scholar
  14. Frei OM (2000) Changes in yield physiology of corn as a result of breeding in northern Europe. Maydica 45:173–183Google Scholar
  15. Frossard E, Dufour P, Sinaj S (1996a) Phosphorus in urban sewage sludges as assessed by isotopic exchange. Soil Sci Soc Am J 60:179CrossRefGoogle Scholar
  16. Frossard E, Sinaj S, Zhang L-M, Morel JL (1996b) The fate of sludge phosphorus in soil-plant systems. Soil Sci Soc Am J 60:1248–1253CrossRefGoogle Scholar
  17. Frossard E, Achat DL, Bernasconi SM, et al. (2011) The use of tracers to investigate phophate cycling in soil-plan systems. Bünemann E, Oberson A, Frossard E Phosphorus action Biol Process soil phosphorus cycling vol 100, Soil Biol Springer, Berlin 59–91. doi:  10.1007/978-3-642-15271-9
  18. Gallet A, Flisch R, Ryser J-P et al (2003) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:568–578. doi: 10.1002/jpln.200321081 CrossRefGoogle Scholar
  19. Gerendas J, Zhu ZJ, Bendixen R et al (1997) Physiological and biochemical processes related to ammonium toxicity in higher plants. Z Pflanzenernahr Bodenkd 160:239–251. doi: 10.1002/jpln.19971600218 CrossRefGoogle Scholar
  20. Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC (2001) The importance of early season phosphorus nutrition. Can J Plant Sci 81:211–224. doi: 10.4141/P00-093 CrossRefGoogle Scholar
  21. He Y, Liao H, Yan X (2003) Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant Soil 248:247–256. doi: 10.1023/A:1022351203545 CrossRefGoogle Scholar
  22. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi: 10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  23. Hund A, Fracheboud Y, Soldati A, Stamp P (2008) Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. Eur J Agron 28:178–185. doi: 10.1016/j.eja.2007.07.003 CrossRefGoogle Scholar
  24. in ‘t Zandt D, Le Marié C, Kirchgessner N et al (2015) High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen. J Exp Bot 66:5507–5517CrossRefGoogle Scholar
  25. Jakobsen P, Willett I (1986) Comparisons of the fertilizing and liming properties of lime-treated sewage sludge with its incinerated ash. Fertil Res 9:187–197. doi: 10.1007/BF01050345 CrossRefGoogle Scholar
  26. Jing J, Rui Y, Zhang F et al (2010) Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crop Res 119:355–364. doi: 10.1016/j.fcr.2010.08.005 CrossRefGoogle Scholar
  27. Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: Its efficient use in agriculture, 1st ed. Adv Agron. doi: 10.1016/B978-0-12-420225-2.00005-4 Google Scholar
  28. Klinglmair M, Lemming C, Jensen LS et al (2015) Phosphorus in Denmark: National and regional anthropogenic flows. Resour Conserv Recycl. doi: 10.1016/j.resconrec.2015.09.019 Google Scholar
  29. Lauzon JD, Miller MH (1997) Comparative response of corn and soybean to seed-placed phosphorus over a range of soil test phosphorus. Commun Soil Sci Plant Anal 28:205–215. doi: 10.1080/00103629709369785 CrossRefGoogle Scholar
  30. Li H, Ma Q, Li H et al (2014) Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant Soil 376:151–163. doi: 10.1007/s11104-013-1965-9 CrossRefGoogle Scholar
  31. Lu S, Miller MH (1993) Determination of the most efficient phosphorus placement for field-grown maize (Zea mays L.) in early growth stages. Can J Soil Sci 73:349–358. doi: 10.4141/cjss93-037 CrossRefGoogle Scholar
  32. Lynch JP (2007) Rhizoeconomics: the roots of shoot growth limitations. HortSci 42:1107–1109Google Scholar
  33. Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56. doi: 10.1007/s11104-004-1096-4 CrossRefGoogle Scholar
  34. Matar AE, Brown SC (1989) Effect of rate and method of phosphate placement on productivity of durum wheat in mediterranean environments. Fertil Res 20:75–82. doi: 10.1007/BF01055431 CrossRefGoogle Scholar
  35. Mellbye ME, Hemphill DD, Volk VV (1982) Sweet corn growth on incinerated sewage sludge-amended soil. J Environ Qual 11:160. doi: 10.2134/jeq1982.00472425001100020002x CrossRefGoogle Scholar
  36. Miljøministeriet (2013) Slambekendtgørelsen - Bekendtgørelse om anvendelse af affald til jordbrugsformål - BEK nr 1650 af 13/12/2006. 1–11Google Scholar
  37. Mullins GL (1993) Cotton root growth as affected by P fertilizer placement. Fertil Res 34:23–26. doi: 10.1007/BF00749956 CrossRefGoogle Scholar
  38. Nagel KA, Putz A, Gilmer F et al (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol 39:891–904CrossRefGoogle Scholar
  39. Nanzer S, Oberson A, Berger L et al (2014a) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques. Plant Soil 377:439–456. doi: 10.1007/s11104-013-1968-6 CrossRefGoogle Scholar
  40. Nanzer S, Oberson A, Huthwelker T et al (2014b) The molecular environment of phosphorus in sewage sludge ash: implications for bioavailability. J Environ Qual 43:1050. doi: 10.2134/jeq2013.05.0202 CrossRefPubMedGoogle Scholar
  41. Neumann G, George TS, Plassard C (2009) Strategies and methods for studying the rhizosphere - the plant science toolbox. Plant Soil 321:431–456. doi: 10.1007/s11104-009-9953-9 CrossRefGoogle Scholar
  42. Neuschütz C, Stoltz E, Greger M (2006) Root penetration of sealing layers made of fly ash and sewage sludge. J Environ Qual 35:1260–1268. doi: 10.2134/jeq2005.0229 CrossRefPubMedGoogle Scholar
  43. Oenema O, Chardon W, Ehlert P, et al. (2012) Phosphorus fertilisers from by-products and wastes. Proc 717, Int Fertil Soc Leek, UK 1–56Google Scholar
  44. Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895 doi: 10.2136/sssaj1991.03615995005500030046x
  45. Petersen J, Lemming C, Rubæk GH, Sørensen P (2013) Side-band injection of acidified cattle slurry as starter P-fertilization for maize seedlings. Vallez, G., Houot, S., Formisano, S., Cheviron, N., Revallier, A., Lepeuple, A.-S., Bacheley, H. Cambier, P. Recycl. Org. residues Agric. From waste Manag. to Ecosyst. Serv. B. Abstr. RAMIRAN 2013 - 15thGoogle Scholar
  46. Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580. doi: 10.1111/j.1469-8137.1993.tb03905.x CrossRefGoogle Scholar
  47. Pypers P, Loon L, Diels J et al (2006) Plant-available P for maize and cowpea in P-deficient soils from the Nigerian northern Guinea savanna – comparison of E- and L-values. Plant Soil 283:251–264. doi: 10.1007/s11104-006-0016-1 CrossRefGoogle Scholar
  48. R Development Core Team (2014) R: A language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  49. Schröder JJ, ten Holte L, Brouwer G (1997) Response of silage maize to placement of cattle slurry. Neth J Agric Sci 45:249–261Google Scholar
  50. Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555. doi: 10.1016/j.tplants.2004.09.003 CrossRefPubMedGoogle Scholar
  51. Visser EJW, Bögemann GM, Smeets M et al (2008) Evidence that ethylene signalling is not involved in selective root placement by tobacco plants in response to nutrient-rich soil patches. New Phytol 177:457–465. doi: 10.1111/j.1469-8137.2007.02256.x PubMedGoogle Scholar
  52. Wang L, de Kroon H, Bögemann GM, Smits AJM (2005) Partial root drying effects on biomass production in brassica napus and the significance of root responses. Plant Soil 276:313–326. doi: 10.1007/s11104-005-5085-z CrossRefGoogle Scholar
  53. Williamson LC (2001) Phosphate availability regulates root system architecture in arabidopsis. Plant Physiol 126:875–882. doi: 10.1104/pp.126.2.875 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958. doi: 10.1104/pp.103.029306 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Withers PJA, Peel S, Chalmers AG et al (2000) The response of manured forage maize to starter phosphorus fertilizer on chalkland soils in southern England. Grass Forage Sci 55:105–113. doi: 10.1046/j.1365-2494.2000.00204.x CrossRefGoogle Scholar
  56. Withers PJA, Sylvester-Bradley R, Jones DL et al (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol. doi: 10.1021/es501670j Google Scholar
  57. Xu H, Zhang H, Shao L, He P (2011) Fraction distributions of phosphorus in sewage sludge and sludge ash. Waste Biomass Valoriz 3:355–361. doi: 10.1007/s12649-011-9103-5 CrossRefGoogle Scholar
  58. Yoshida H, Christensen TH, Guildal T, Scheutz C (2015) A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant. Chemosphere 138:874–882. doi: 10.1016/j.chemosphere.2013.09.045 CrossRefPubMedGoogle Scholar
  59. Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59. doi: 10.1093/jexbot/51.342.51 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Camilla Lemming
    • 1
  • Astrid Oberson
    • 2
  • Andreas Hund
    • 2
  • Lars Stoumann Jensen
    • 1
  • Jakob Magid
    • 1
  1. 1.Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Institute of Agricultural SciencesETH ZürichLindauSwitzerland

Personalised recommendations