Advertisement

Plant and Soil

, Volume 410, Issue 1–2, pp 21–40 | Cite as

Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India

  • Indu Singh Sankhla
  • Nisha Tak
  • Raju Ram Meghwal
  • Sunil Choudhary
  • Alkesh Tak
  • Sonam Rathi
  • Janet I. Sprent
  • Euan K. James
  • Hukam Singh Gehlot
Regular Article

Abstract

Aims

To describe the structure of nodules of Vachellia (Acacia) jacquemontii, and to characterise the rhizobia that occupy them.

Methods

Light and electron microscopy were used to analyse nodules. Rhizobia were characterised using their 16S rRNA, housekeeping and symbiosis-related gene sequences.

Results

Nodules of V. jacquemontii were typical of all other described mimosoid legumes. All 73 of the isolates were strains of Ensifer, and concatenated phylogenetic analysis of their housekeeping genes (rrs, recA, atpD, glnII and dnaK) suggested that they are novel, forming separate lineages close to E. saheli. The phylogenies of the symbiosis-essential genes nodA and nifH were inconsistent with the housekeeping phylogenies. The nodA sequences of most isolates were close to that of E. arboris HAMBI 1552T, but the nifH gene was found to be related to that of E. kostiensis HAMBI 1489T. All the tested Ensifer strains, except for AJ24, were found to be capable of nodulating other species of Vachellia as well as native Indian Mimosa and Prosopis spp.

Conclusions

Stressful conditions caused by the alkaline soil of the Thar Desert have resulted in V. jacquemontii being nodulated by diverse and promiscuous Ensifer species that are capable of nodulating other native members of the tribe Mimoseae.

Keywords

Vachellia (Acacia) jacquemontii Thar Desert Ensifer rhizobia nifH nodA Multi Locus Sequence Analysis (MLSA) 

Notes

Acknowledgments

Indu S. Sankhla thanks the University Grants Commission (UGC), New Delhi, for a junior and senior research fellowship. The work is also supported by grants from the Department of Biotechnology Govt. of India (BT/PR11461/AGR/21/270/2008) and the University Grants Commission (UGC-SAPII-CAS-I, UGC-BSR Start-Up-Grant F.30-16/2014). The Department of Meteorological and Soil Science, Central Arid Zone Research Institute, Jodhpur is acknowledged for help in providing data.

Supplementary material

11104_2016_2838_MOESM1_ESM.pdf (423 kb)
ESM 1 (PDF 422 kb)
11104_2016_2838_MOESM2_ESM.xls (40 kb)
ESM 2 (XLS 40 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Ba S, Willems A, de Lajudie P, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé J, Gillis M, Boivin-Masson C, Lorquin J (2002) Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 25:130–145. doi: 10.1078/0723-2020-00091 CrossRefPubMedGoogle Scholar
  3. Bontemps C, Elliott GN, Simon MF, dos Reis Junior FB, Gross E, Lawton RC, Neto NE, Loureiro MF, de Faria SM, Sprent JI, James EK, Young JPW (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52. doi: 10.1111/j.1365-294X.2009.04458.x CrossRefPubMedGoogle Scholar
  4. Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, Moulin L, Elliott GN, Lacercat-Didier L, Dasilva C, Grether R, Camargo-Ricalde SL, Chen C, Sprent JI, Martínez-Romero E, Young JPW, James EK (2016) Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. New Phytol 209:319–333. doi: 10.1111/nph.13573 CrossRefPubMedGoogle Scholar
  5. Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, de Lajudie P, Galiana A (2012) Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecol 80:534–547. doi: 10.1111/j.1574-6941.2012.01315.x CrossRefPubMedGoogle Scholar
  6. Brockwell J, Searle SD, Jeavons AC, Waayers M (2005) Nitrogen fixation in acacias: an untapped resource for sustainable plantations, farm forestry and land reclamation. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  7. Cappuccino JG, Sherman N (2007) Microbiology, a laboratory manual, 7th edn. The Benjamin/Cummings Publishing Co, CaliforniaGoogle Scholar
  8. Cheng HR, Jiang N (2006) Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 28:55–59. doi: 10.1007/s10529-005-4688-z CrossRefPubMedGoogle Scholar
  9. Choudhary K, Singh M, Shekhawat NS (2009) Ethnobotany of Acacia jacquemontii Benth. -an uncharted tree of Thar Desert, Rajasthan, India. Ethnobot Leaflets 13:668–678Google Scholar
  10. Cordero I, Ruiz-Díez B, Coba de la Peña T, Balaguer L, Lucas MM, Rincón A, Pueyo JJ (2016) Rhizobial diversity, symbiotic effectiveness and structure of nodules of Vachellia macracantha. Soil Biol Biochem. doi: 10.1016/j.soilbio.2016.01.011 Google Scholar
  11. de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins M, Dreyfus BL, Kersters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733. doi: 10.1099/00207713-44-4-715 CrossRefGoogle Scholar
  12. Degefu T, Wolde-meskel E, Frostegård Å (2012) Phylogenetic multilocus sequence analysis identifies seven novel Ensifer genospecies isolated from a less-well-explored biogeographical region in East Africa. Int J Syst Evol Microbiol 62:2286–2295. doi: 10.1099/ijs.0.039230-0 CrossRefPubMedGoogle Scholar
  13. Diouf F, Diouf D, Klonowska A, Le Queré A, Bakhoum N, Fall D, Neyra M, Parrinello H, Diouf M, Ndoye I, Moulin L (2015) Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a Putative Geographical Pattern. PLoS One 10:1–20. doi: 10.1371/journal.pone.0117667 Google Scholar
  14. dos Reis Junior FB, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro MF, Queiroz LP, Scotti MR, Chen WM, Norén A, Rubio MC, de Faria SM, Bontemps C, Goi SR, Young JPW, Sprent JI, James EK (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946CrossRefGoogle Scholar
  15. Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180. doi: 10.1111/j.1469-8137.2006.01894.x CrossRefPubMedGoogle Scholar
  16. Elsheikh EAE (1998) Effects of salt on rhizobia and bradyrhizobia: a review. Ann Appl Biol 132:507–524CrossRefGoogle Scholar
  17. Felsenstein J (1981) Evolutionary trees from DNA-sequences-a maximum likelihood approach. J Mol Evol 17:368–376. doi: 10.1007/BF01734359 CrossRefPubMedGoogle Scholar
  18. Fred EB, Waksman SA (1928) Yeast extract-manitol agar. Laboratory manual of general microbiology. McGraw -Hill, New York, p 145Google Scholar
  19. Gamble JS (1918) Flora of the presidency of madras, vol I. West Newman and Alard, LondonGoogle Scholar
  20. Garau G, Reeve WG, Brau L, Deiana P, Yates RJ, James D, Tiwari R, O’Hara GW, Howieson JG (2005) The symbiotic requirements of different Medicago spp. suggest the evolution of Sinorhizobium meliloti and S. medicae with hosts differentially adapted to soil pH. Plant Soil 276:263–277. doi: 10.1007/s11104-005-0374-0 CrossRefGoogle Scholar
  21. Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134. doi: 10.1016/j.soilbio.2008.10.011 CrossRefGoogle Scholar
  22. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048. doi: 10.1099/00207713-51-6-2037 CrossRefPubMedGoogle Scholar
  23. Gehlot HS, Panwar D, Tak N, Tak A, Sankhla IS, Poonar N, Parihar R, Shekhawat NS, Kumar M, Tiwari R, Ardley J, James EK, Sprent JI (2012) Nodulation of legumes from the Thar desert of India and molecular characterization of their rhizobia. Plant Soil 357:227–243. doi: 10.1007/s11104-012-1143-5 CrossRefGoogle Scholar
  24. Gehlot HS, Tak N, Kaushik M, Mitra S, Chen WM, Poweleit N, Panwar D, Poonar N, Parihar R, Tak A, Sankhla IS, Ojha A, Rao SR, Simon MF, dos Reis Junior FB, Perigolo N, Tripathi AK, Sprent JI, Young JPW, James EK, Gyaneshwar P (2013) An invasive Mimosa in India does not adopt the symbionts of its native relatives. Ann Bot 112:179–196. doi: 10.1093/aob/mct112 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gross E, Cordeiro L, Caetano FH (2002) Nodule ultrastructure and initial growth of Anadenanthera peregrina (L.) Speg. var. falcata (Benth.) Altschul plants infected with rhizobia. Ann Bot 90:175–183. doi: 10.1093/aob/mcf184 CrossRefPubMedCentralGoogle Scholar
  26. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada de los Santos P, Gross E, Dos Reis FB Jr, Sprent JI, Young JPW, James EK (2011) Legume-nodulating betaproteobacteria: diversity, host range and future prospects. Mol Plant Microbe Interact 24:1276–1288. doi: 10.1094/MPMI-06-11-0172 CrossRefPubMedGoogle Scholar
  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  28. Han LL, Wang ET, Han TX, Liu J, Sui XH, Chen WF, Chen WX (2009) Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil 324:291–305. doi: 10.1007/s11104-009-9956-6 CrossRefGoogle Scholar
  29. Harrison E, Brockhurst MA (2012) Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 20:262–267. doi: 10.1016/j.tim.2012.04.03 CrossRefPubMedGoogle Scholar
  30. Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426PubMedPubMedCentralGoogle Scholar
  31. James EK, Sprent JI, Sutherland JM, McInroy SG, Minchin FR (1992) The structure of nitrogen fixing nodules on the aquatic mimosoid legume Neptunia plena. Ann Bot 69:173–180Google Scholar
  32. Khbaya B, Neyra M, Normand P, Zerhari K, Filali-Maltouf A (1998) Genetic diversity and phylogeny of rhizobia that nodulate Acacia spp. in Morocco assessed by analysis of rRNA genes. Appl Environ Microbiol 64:4912–4917PubMedPubMedCentralGoogle Scholar
  33. Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci 100:9658–9662. doi: 10.1073/pnas.1632870100 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kuykendall L, Young J, Martínez-Romero E, Kerr A, Sawada H (2005) Rhizobium Frank 1889, 338AL. In: Brennar DJ, Krieg NR, Staley JT (eds.) Bergey’s Manual® of Systematic Bacteriology, Springer, pp 325–340. doi: 10.1007/0-387-29298-5_82
  35. Laguerre G, van Berkum P, Amarger N, Prévost D (1997) Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis and Onobrychis. Appl Environ Microbiol 63:4748–4758PubMedPubMedCentralGoogle Scholar
  36. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993CrossRefPubMedGoogle Scholar
  37. Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent JI, James EK, Muasya AM (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol 91:1–17. doi: 10.1093/femsec/fiu024 CrossRefPubMedGoogle Scholar
  38. Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988. doi: 10.1099/ijs.0.025049-0 CrossRefPubMedGoogle Scholar
  39. Lloret L, Ormeno-Orrillo E, Rincon R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290. doi: 10.1016/j.syapm.2006.12.002 CrossRefPubMedGoogle Scholar
  40. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214. doi: 10.1099/ijs.0.65392-0 CrossRefPubMedGoogle Scholar
  41. Martínez-Romero E (2009) Coevolution in Rhizobium-legume symbiosis? DNA Cell Biol 28:361–370. doi: 10.1089/dna.2009.0863 CrossRefPubMedGoogle Scholar
  42. McInroy SG, Campbell CD, Haukka KE, Odee DW, Sprent JI, Wang WJ, Young JPW, Sutherland JM (1999) Characterisation of rhizobia from African acacias and other tropical woody legumes using Biolog™ and partial 16S rRNA sequencing. FEMS Microbiol Lett 170:111–117. doi: 10.1111/j.1574-6968.1999.tb13362.x PubMedGoogle Scholar
  43. Miller JT, Seigler D (2012) Evolutionary and taxonomic relationships of Acacia s.l. (Leguminosae: Mimosoideae). Aust Syst Bot 3:217–224. doi: 10.1071/SB11042 CrossRefGoogle Scholar
  44. Morón B, Soria-Díaz ME, Ault J, Verroios G, Noreen S, Rodríguez-Navarro DN, Gil-Serrano A, Thomas-Oates J, Megías M, Sousa C (2005) Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem Biol 12:1029–1040. doi: 10.1016/j.chembiol.2005.06.014 CrossRefPubMedGoogle Scholar
  45. Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Evol Microbiol 49:1359–1368. doi: 10.1099/00207713-49-4-1359 Google Scholar
  46. Odee DW, Sutherland JM, Makatiani ET, McInroy SG, Sprent JI (1997) Phenotypic characteristics and composition of rhizobia associated with woody legumes growing in diverse Kenyan conditions. Plant Soil 188:65–75. doi: 10.1023/A:1004204413140 CrossRefGoogle Scholar
  47. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42. doi: 10.1080/07352689.2014.897899 CrossRefGoogle Scholar
  48. Perrineau MM, Galiana A, de Faria SM, Bena G, Duponnois R, Reddell R, Prin Y (2012) Monoxenic nodulation process of Acacia mangium (Mimosoideae, Phyllodineae) by Bradyrhizobium sp. Symbiosis 56:87–95. doi: 10.1007/s13199-012-0163-5 CrossRefGoogle Scholar
  49. Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318. doi: 10.1094/MPMI.1999.12.4.293 CrossRefPubMedGoogle Scholar
  50. Ragupathy S, Seigler DS, Ebinger JE, Maslin BR (2014) New combinations in Vachellia and Senegalia (Leguminosae: Mimosoideae) for south and west Asia. Phytotaxa 162:174–180. doi: 10.11646/phytotaxa.162.3.6 CrossRefGoogle Scholar
  51. Räsänen LA, Sprent JI, Lindström K (2001) Symbiotic properties of sinorhizobia isolated from Acacia and Prosopis nodules in Sudan and Senegal. Plant Soil 235:193–210. doi: 10.1023/A:1011901706936 CrossRefGoogle Scholar
  52. Richardson AE, Viccars LA, Watson JM, Gibson AH (1995) Differentiation of Rhizobium strains using the polymerase chain reaction with random and directed primers. Soil Biol Biochem 27:515–524. doi: 10.1016/0038-0717(95)98626-Y CrossRefGoogle Scholar
  53. Rincón-Rosales R, Lloret L, Ponce E, Martínez-Romero E (2009) Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol 67:103–117. doi: 10.1111/j.1574-6941.2008.00590.x CrossRefPubMedGoogle Scholar
  54. Rogel MA, Ormeno-Orrillo E, Romero EM (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104. doi: 10.1016/j.syapm.2010.11.015 CrossRefPubMedGoogle Scholar
  55. Romdhane SB, Nasr H, Samba‐Mbaye R, Neyra M, Ghorbal MH, de Lajudie P (2006) Genetic diversity of Acacia tortilis ssp. raddiana rhizobia in Tunisia assessed by 16S and 16S‐23S rDNA genes analysis. J Appl Microbiol 100:436–445. doi: 10.1111/j.1365-2672.2005.02765.x CrossRefPubMedGoogle Scholar
  56. Singh SK, Pancholy A, Jindal SK, Pathak R (2011) Effect of plant growth promoting rhizobia on seed germination and seedling traits in Acacia senegal. Ann For Res 54:161–169Google Scholar
  57. Somasegaran P, Hoben HJ (1994) Methods in legume rhizobium technology. Springer, New YorkGoogle Scholar
  58. Sprent JI (2009) Legume nodulation. A global perspective. Wiley-Blackwell, Chichester. doi: 10.1002/9781444316384 CrossRefGoogle Scholar
  59. Sprent JI, Gehlot HS (2010) Nodulated legumes in arid and semi-arid environments: are they important? Plant Ecol Divers 3:211–219. doi: 10.1080/17550874.2010.538740 CrossRefGoogle Scholar
  60. Sprent JI, Ardley JK, James EK (2013) From North to South: a latitudinal look at legume nodulation processes. S Afr J Bot 89:31–41. doi: 10.1016/j.sajb.2013.06.011 CrossRefGoogle Scholar
  61. Stepkowski T, Czaplinska M, Miedzinska K, Moulin L (2003) The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Syst Appl Microbiol 26:483–494. doi: 10.1078/072320203770865765 CrossRefPubMedGoogle Scholar
  62. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tavare S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci (Am Math Soc) 17:57–86Google Scholar
  64. Thies JE, Holmes EM, Vachot A (2001) Application of molecular techniques to studies in Rhizobium ecology: a review. Anim Prod Sci 41:299–319. doi: 10.1071/EA99171 CrossRefGoogle Scholar
  65. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR, Chen WX (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci 109:8629–8634. doi: 10.1073/pnas.1120436109 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Toledo I, Lloret L, Martínez-Romero E (2003) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64. doi: 10.1078/072320203322337317 CrossRefPubMedGoogle Scholar
  68. Turner SL, Young JP (2000) The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319. doi: 10.1093/oxfordjournals.molbev.a026311 CrossRefPubMedGoogle Scholar
  69. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications, OxfordGoogle Scholar
  70. Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martínez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716. doi: 10.1016/j.syapm.2005.05.007 CrossRefPubMedGoogle Scholar
  71. Wang ET, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002) Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:687–693. doi: 10.1099/ijs.0.01954-0 Google Scholar
  72. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wolde-meskel E, Terefework Z, Frostegård Å, Lindström K (2005) Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 55:1439–1452. doi: 10.1099/ijs.0.63534-0 CrossRefPubMedGoogle Scholar
  74. Xu KW, Penttinen P, Chen YX, Chen Q, Zhang X (2013) Symbiotic efficiency and phylogeny of the rhizobia isolated from Leucaena leucocephala in arid–hot river valley area in Panxi, Sichuan, China. Appl Microbiol Biotechnol 97:783–793. doi: 10.1007/s00253-012-4246-2 CrossRefPubMedGoogle Scholar
  75. Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120. doi: 10.1111/j.1574-6968.1993.tb06014.x CrossRefPubMedGoogle Scholar
  76. Yates RJ, Howieson JG, Nandasena KG, O’Hara GW (2004) Root-nodule bacteria from indigenous legumes in the north-west of Western Australia and their interaction with exotic legumes. Soil Biol Biochem 36:1319–1329. doi: 10.1016/j.soilbio.2004.04.013 CrossRefGoogle Scholar
  77. Zhang YM, Li Y, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX (2011) Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol 77:6331–6342. doi: 10.1128/AEM.00542-11 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Indu Singh Sankhla
    • 1
    • 2
  • Nisha Tak
    • 1
  • Raju Ram Meghwal
    • 1
  • Sunil Choudhary
    • 1
  • Alkesh Tak
    • 1
  • Sonam Rathi
    • 1
  • Janet I. Sprent
    • 3
  • Euan K. James
    • 4
  • Hukam Singh Gehlot
    • 1
  1. 1.BNF and Stress Biology Laboratory, Department of BotanyJai Narain Vyas UniversityJodhpurIndia
  2. 2.Department of BotanyUniversity of RajasthanJaipurIndia
  3. 3.University of Dundee at the James Hutton InstituteDundeeUK
  4. 4.The James Hutton InstituteDundeeUK

Personalised recommendations