Plant and Soil

, Volume 403, Issue 1–2, pp 253–265 | Cite as

Arbuscular mycorrhizal community structure on co-existing tropical legume trees in French Guiana

  • Francis Q. Brearley
  • David R. Elliott
  • Amaia Iribar
  • Robin Sen
Regular Article

Abstract

Aims

We aimed to characterise the arbuscular mycorrhizal fungal (AMF) community structure and potential edaphic determinants in the dominating, but poorly described, root-colonizing Paris-type AMF community on co-occurring Amazonian leguminous trees.

Methods

Three highly productive leguminous trees (Dicorynia guianensis, Eperua falcata and Tachigali melinonii were targeted) in species-rich forests on contrasting soil types at the Nouragues Research Station in central French Guiana. Abundant AMF SSU rRNA amplicons (NS31-AM1 & AML1-AML2 primers) from roots identified via trnL profiling were subjected to denaturing gradient gel electrophoresis (DGGE), clone library sequencing and phylogenetic analysis.

Results

Classical approaches targeting abundant SSU amplicons highlighted a diverse root-colonizing symbiotic AMF community dominated by members of the Glomeraceae. DGGE profiling indicated that, of the edaphic factors investigated, soil nitrogen was most important in influencing the AMF community and this was more important than any host tree species effect.

Conclusions

Dominating Paris-type mycorrhizal leguminous trees in Amazonian soils host diverse and novel taxa within the Glomeraceae that appear under edaphic selection in the investigated tropical forests. Linking symbiotic diversity of identified AMF taxa to ecological processes is the next challenge ahead.

Keywords

Mycorrhiza Paris-type mycorrhizas Tropical forest Soil SSU TrnLegumes Trees 

References

  1. Aime MC, Brearley FQ (2012) Tropical fungal diversity: closing the gap between species estimates and species discovery. Biodivers Conserv 21:2177–2180. doi:10.1007/s10531-012-0338-7
  2. Aldrich-Wolfe L (2007) Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community. Ecology 88:559–566. doi:10.1890/05-1177 CrossRefPubMedGoogle Scholar
  3. Alexander IJ (1989) Mycorrhizas in tropical forests. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific Publications, Oxford, UK, pp. 169–188Google Scholar
  4. Béreau M, Garbaye J (1994) First observations on the root morphology and symbioses of 21 major tree species in the primary tropical rain forest of French Guyana. Ann Sci For 51:407–416. doi:10.1051/forest:19940406 CrossRefGoogle Scholar
  5. Béreau M, Louisanna E, Garbaye J (2004) Mycorrhizal symbiosis in the tropical rainforest of French Guiana and its potential contribution to tree regeneration and growth. In: Ecology and management of a neotropical rainforest. In: S Gourlet-Fleu (eds), J-M Guehl, O laroussinie). Elsevier, Paris, France, pp. 114–119Google Scholar
  6. Bongers F, Charles-Dominique P, Forget PM, Théry M (2001) Nouragues: dynamics and plant-animal interactions in a neotropical rainforest. Kluwer Academic Publishers, Dordrect, The NetherlandsCrossRefGoogle Scholar
  7. Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob Chang Biol 20:3646–3659. doi:10.1111/gcb.12618 CrossRefPubMedGoogle Scholar
  8. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106:12794–12797. doi:10.1073/pnas.0905845106 CrossRefPubMedCentralGoogle Scholar
  9. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples version 9. http://purl.oclc.org/estimates .
  10. de Grandcourt A, Epron D, Montpied P, Louisanna E, Béreau M, Garbaye J, Guehl J-M (2004) Contrasting responses to mycorrhizal inoculation and phosphorus availability in seedlings of two tropical rainforest tree species. New Phytol 161:865–875. doi:10.1046/j.1469-8137.2004.00978.x CrossRefGoogle Scholar
  11. de Oliveira FR, Buscardo E, Nagy L, dos Santos Maciel AB, Carrenho R, Luizão RCC (2014) Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a central Amazonian terra firme forest. Mycorrhiza 24:21–32. doi:10.1007/s00572-013-0507-x CrossRefGoogle Scholar
  12. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167. doi:10.1146/annurev.energy.28.050302.105532 CrossRefGoogle Scholar
  13. Dumbrell AJ, Nelson M, Dytham C, Helgason T, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME j 4:337–345. doi:10.1038/ismej.2009.122 CrossRefPubMedGoogle Scholar
  14. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  15. Elliott DR, Wilson M, Buckley CMF, Spratt DA (2005) Cultivable oral microbiota of domestic dogs. J Clin Microbiol 43:5470–5476. doi:10.1128/JCM.43.11.5470-5476.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fauset S et al. (2015) Hyperdominance in Amazonian forest carbon cycling. Nat Commun 6:6857. doi:10.1038/ncomms7857 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117–127. doi:10.1007/s00442-008-1117-8 CrossRefPubMedGoogle Scholar
  18. Gallaud I (1904) Études sur les mycorrhizes endotrophes. Le Bigot Frères, Lille, FranceGoogle Scholar
  19. Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity, and conservation. Oxford University Press, UKGoogle Scholar
  20. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381. doi:10.1038/nature10425 CrossRefPubMedGoogle Scholar
  21. Gonzalez MA, Baraloto C, Engel J, Mori SA, Pétronelli P, Riéra B, Roger A, Thébaud C, Chave J (2009) Identification of Amazonian trees with DNA barcodes. PLoS One 4:e7483. doi:10.1371/journal.pone.0007483 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haug I, Setaro S, Suárez JP (2013) Reforestation sites show similar and nested AMF communities to an adjacent pristine forest in a tropical mountain area of south Ecuador. PLoS One 8:e63524. doi:10.1371/journal.pone.0063524 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haug I, Wubet T, Weiß M, Aguirre N, Weber M, Günter S, Kottke I (2010) Species-rich but distinct arbuscular mycorrhizal communities in reforestation plots on degraded pastures and in neighboring pristine tropical mountain rain forest. Trop Ecol 51:125–148Google Scholar
  24. Hazard C, Gosling P, van der Gast CJ, Mitchell DT, Doohan FM, Bending GD (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME j 7:498–508. doi:10.1038/ismej.2012.127
  25. Heinonsalo J, Jørgensen KS, Sen R (2001) Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community structure and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiol Ecol 36:73–84. doi:10.1111/j.1574-6941.2001.tb00827.x CrossRefPubMedGoogle Scholar
  26. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431. doi:10.1038/28764 CrossRefPubMedGoogle Scholar
  27. Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630. doi:10.1111/j.1365-2745.2007.01239.x CrossRefGoogle Scholar
  28. Hepper CM, Azcon-Aguilar C, Rosendahl S, Sen R (1988) Competition between three species of Glomus used as spatially separated introduced and indigenous mycorrhizal inocula for leek (Allium porrum L.). New Phytol 110:207–215. doi:10.1111/j.1469-8137.1988.tb00254.x CrossRefGoogle Scholar
  29. Hodge A (2014) Interactions between arbuscular mycorrhizal fungi and organic material substrates. Adv Appl Microbiol 89:47–99. doi:10.1016/B978-0-12-800259-9.00002-0 CrossRefPubMedGoogle Scholar
  30. Huang X (1992) A contig assembly program based on sensitive detection of fragment overlaps. Genomics 14:18–25. doi:10.1016/S0888-7543(05)80277-0 CrossRefPubMedGoogle Scholar
  31. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. doi:10.1093/bioinformatics/btq003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678. doi:10.1046/j.1365-294X.2002.01647.x CrossRefPubMedGoogle Scholar
  33. Ji B, Bentivenga SP, Caspar BB (2012) Comparisons of AM fungal spore communities with the same hosts but different soil chemistries over local and geographical scales. Oecologia 168:187–197. doi:10.1007/s00442-011-2067-0 CrossRefPubMedGoogle Scholar
  34. Jones FA, Erickson DL, Bernal MA, Bermingham E, Kress WJ, Herre EA, Muller-Landau HC, Turner BL (2011) The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling. PLoS One 6:e24506. doi:10.1371/journal.pone.0024506 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000) Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol Lett 3:106–113. doi:10.1046/j.1461-0248.2000.00126.x CrossRefGoogle Scholar
  36. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  37. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303. doi:10.1016/j.soilbio.2011.07.012 CrossRefGoogle Scholar
  38. Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110. doi:10.1111/j.1461-0248.2005.00853.x CrossRefPubMedGoogle Scholar
  39. Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slavíková R, Štajerová K, Vosátka M, Sýkorová Z (2014) Comparison of commonly used primer sets for evaluation of arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493. doi:10.1016/j.soilbio.2013.08.027 CrossRefGoogle Scholar
  40. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349. doi:10.1111/j.1574-6941.2008.00531.x CrossRefPubMedGoogle Scholar
  41. Lovelock CE, Andersen K, Morton JB (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135:268–279. doi:10.1007/s00442-002-1166-3 CrossRefPubMedGoogle Scholar
  42. Martin J, Béreau M, Louisanna E, Ocampo JA (2001) Arbuscular mycorrhizas in Dicorynia guianensis and Eperua falcata trees from primary tropical rain forest of French Guiana. Symbiosis 31:283–291Google Scholar
  43. Michalet S, Rohr J, Warshan D, Bardon C, Roggy J-C, Domenach A-M, Czarnes S, Pommier T, Combourieu B, Guillaumand N, Bellvert F, Comte G, Poly F (2013) Phytochemical analysis or mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiol Biochem 72:169–177. doi:10.1016/j.plaphy.2013.05.003 CrossRefPubMedGoogle Scholar
  44. Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027. doi:10.1016/j.soilbio.2007.11.014 CrossRefGoogle Scholar
  45. Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364. doi:10.1111/j.1469-8137.2004.01169.x CrossRefGoogle Scholar
  46. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. (2015) Vegan: community ecology package. R Package version 2.2–1. http://cran.r-project.org/package=vegan Google Scholar
  47. Öpik M, Moora M, Liira J, Kõljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal scots pine forest and grassland soils. New Phytol 160:581–593. doi:10.1046/j.1469-8137x.2003.00917.x CrossRefGoogle Scholar
  48. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. doi:10.1111/j.1469-8137.2010.03334.x CrossRefPubMedGoogle Scholar
  49. Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME, Liira J, Metsis M, Neshataeva V, Paal J, Phosri C, Põlme S, Reier Ü, Saks Ü, Schimann H, Thiéry O, Vasar M, Moora M (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430. doi:10.1007/s00572-013-0482-2 CrossRefPubMedGoogle Scholar
  50. Paradis E, Claude G, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  51. Pizano C, Mangan SA, Herre EA, Eom AH, Dalling JW (2011) Above- and belowground interactions drive habitat segregation between two cryptic species of tropical trees. Ecology 92:47–56. doi:10.1890/09-1715.1.CrossRefPubMedGoogle Scholar
  52. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139. doi:10.1093/treephys/tpq063.CrossRefPubMedGoogle Scholar
  53. Poszwa A, Ferry B, Pollie B, Grimaldi C, Charles-Dominique P, Loubet M, Dambrine E (2009) Variations of plant and soil 87Sr/86Sr along the slope of a tropical inselberg. Ann For Sci 66:512. doi:10.1051/forest/2009036 CrossRefGoogle Scholar
  54. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.Google Scholar
  55. Ridgway KP, Duck JM, Young JPW (2003) Identification of roots from grass swards using PCR-RFLP and FFLP of the plastid trnL (UAA) intron. BMC Ecol 3:8. doi:10.1186/1472-6785-3-8 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Roger A, Colard A, Angelard C, Sanders IR (2013) Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME j 7:2137–2146. doi:10.1038/ismej.2013.112 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  58. Schimann H, Ponton S, Hättenschwiler S, Ferry B, Lensi R, Domenach A-M, Roggy J-C (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol Biochem 40:487–494. doi:10.1016/j.soilbio.2007.09.011 CrossRefGoogle Scholar
  59. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089 CrossRefPubMedGoogle Scholar
  60. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. doi:10.1038/nbt1486 CrossRefPubMedGoogle Scholar
  61. Sheublin TR, Ridgway KR, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246. doi:10.1128/AEM.70.10.6240-6246.2004.CrossRefGoogle Scholar
  62. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular–arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295PubMedPubMedCentralGoogle Scholar
  63. Slik JWF et al. (2015) An estimate of the number of tropical tree species. Proc Natl Acad Sci U S A 112:7272–7477. doi:10.1073/pnas.1423147112 CrossRefGoogle Scholar
  64. Smith FA, Smith SE (1997) Structural diversity in (vesicular-)arbuscular mycorrhizal symbioses. New Phytol 137:373–388CrossRefGoogle Scholar
  65. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York, USAGoogle Scholar
  66. Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, Kew, UKGoogle Scholar
  67. Stürmer SL, Siqueira JO (2011) Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in western Brazilian amazon. Mycorrhiza 21:255–267. doi:10.1007/s00572-010-0330-6 CrossRefPubMedGoogle Scholar
  68. Sýkorová Z, Wiemken A, Redecker D (2007) Cooccurring Gentiana Verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 73:5426–5434. doi:10.1128/AEM.00987-07 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. doi:10.1007/BF00037152 CrossRefPubMedGoogle Scholar
  70. ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino J-F, Prévost M-F, Spichiger R, Castellanos H, von Hildebrand P, Vásquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447. doi:10.1038/nature05134 CrossRefPubMedGoogle Scholar
  71. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673 CrossRefPubMedPubMedCentralGoogle Scholar
  72. van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091. doi:10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2 CrossRefGoogle Scholar
  73. van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology: the past, the present, and the future. New Phytol 205:1406–1423. doi:10.1111/nph.13288 CrossRefPubMedGoogle Scholar
  74. Werner GDA, Kiers ET (2015) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524. doi:10.1111/nph.13092 CrossRefPubMedGoogle Scholar
  75. Zeng W, Zou B, Lei P, Zeng Y, Liu Y, Liu C, Xiang W (2015) A molecular method to identify species of fine roots and to predict the proportion of a species in mixed samples in subtropical forests. Front Plant Sci 6:313. doi:10.3389/fpls.2015.00313

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francis Q. Brearley
    • 1
  • David R. Elliott
    • 1
    • 2
  • Amaia Iribar
    • 3
  • Robin Sen
    • 1
  1. 1.School of Science and the EnvironmentManchester Metropolitan UniversityManchesterUK
  2. 2.Environmental Sustainability Research Centre, College of Life and Natural SciencesUniversity of DerbyDerby,UK
  3. 3.Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRSUniversity Toulouse IIIToulouseFrance

Personalised recommendations