Skip to main content

Advertisement

Log in

Influence of coniferous and deciduous vegetation on major and trace metals in forests of northern New England, USA

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Climate change and land-use are predicted to shift coniferous stands to deciduous stands in northern New England. This change in vegetation type may modify plant-soil cycling of major and trace metals, potentially affecting soil fertility and contaminant transport.

Methods

We studied eight pairs of adjacent coniferous- and deciduous-dominated forest stands across northern New England, USA. We estimated the mean residence time (MRT) of each metal in organic horizons using calculated litterfall from allometric equations and interpolated atmospheric deposition rates.

Results

Coniferous stands had 30–50 % smaller organic horizons pools of Ca, K, Mg, Mn, and Zn than deciduous stands. Mineral horizon metal pools were similar between vegetation types. Foliar metal concentrations and pools were smaller at coniferous stands than deciduous stands. The organic horizon MRT for Ca, Cd, Cu, K, Mg, and Mn was predicted to be 40–200 % longer for coniferous stands than deciduous stands.

Conclusions

Based upon our findings, we conclude that a shift from coniferous to deciduous vegetation could decrease the accumulation and retention of major metals in the organic horizons. Further investigations into the effect of vegetation type on mineral horizons are needed to constrain regional changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaenssens S, Hansen K, Staelens J, Wuyts K, De Schrijver A, Baeten L, Boeckx P, Samson R, Verheyen K (2012) Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Sci Total Environ 420:168–182

    Article  CAS  PubMed  Google Scholar 

  • NADP (National Atmospheric Deposition Program) (2007) National Atmospheric Deposition Program (NRSP-3): NADP Program Office, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820

  • Aubert M, Margerie P, Trap J, Bureau F (2010) Aboveground-belowground relationships in temperate forests: plant litter composes and microbiota orchestrates. For Ecol Manag 259:563–572

    Article  Google Scholar 

  • Augusto L, Bert D (2005) Estimating stemwood nutrient concentration with an increment borer: a potential source of error. Forestry 78:451–455

    Article  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253

    Article  Google Scholar 

  • Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J (2015) Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev 90:444–466

    Article  PubMed  Google Scholar 

  • Barnes BV, Wagner WH (1981) Michigan Trees. A guide to the trees of Michigan and the Great Lakes Region. University of Michigan Press, Ann Arbor. 384 pp

  • Berger TW, Inselsbacher E, Mutsch F, Pfeffer M (2009) Nutrient cycling and soil leaching in eighteen pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies). For Ecol Manag 258:2578–2592

    Article  Google Scholar 

  • Binkley D (1995) The influence of tree species on forest soils: processes and patterns. In: Mead DJ, Cornforth IS (eds) Proceedings of the trees and soil workshop agronomy society of New Zealand special publication #10. Lincoln University Press, Canterbury, pp 1–33

    Google Scholar 

  • Binkley D, Giardina C (1998) Why do tree species affect soils? the warp and woof of tree–soil interactions. Biogeochemistry 42:89–106

    Article  Google Scholar 

  • Browne CL, Fang SC (1978) Uptake of mercury vapor by wheat: an assimilation model. Plant Physiol 61:430–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–284

    Article  CAS  Google Scholar 

  • Carnol M, Bazgir M (2013) Nutrient return to the forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce for. Ecol Manag 309:66–75

    Article  Google Scholar 

  • Castro-Diez P, Villar-Salvador P, Perez-Rontome C, Maestro-Martinez M, Montserrat-Marti G (1997) Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees 11:127–134

    Google Scholar 

  • Cross A, Perakis SS (2011) Complementary models of tree species – soil relationships in Old-growth temperate forests. Ecosystems 14:248–260

    Article  CAS  Google Scholar 

  • Dauer JM, Chorover J, Chadwick OA, Oleksyn J, Tjoelker MG, Hobbie SE, Reich PB, Eissenstat DM (2007) Controls over leaf and litter calcium concentrations among temperate trees. Biogeochemistry 86:175–187

    Article  CAS  Google Scholar 

  • de Schrijver A, Staelens J, Wuyts K, Van Hoydonck G, Janssen N, Mertens J, Gielis L, Geudens G, Augusto L, Verheyen K (2008) Effect of vegetation type on throughfall deposition and seepage flux. Environ Pollut 153:295–303

    Article  PubMed  Google Scholar 

  • de Schrijver A, de Frenne P, Staelens J, Verstraeten G, Muys B, Vesterdal L, Wuyts K, van Nevel L, Schelfhout S, de Neve S, Verheyen K (2012) Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob Chang Biol 18:1127–1140

    Article  Google Scholar 

  • Doll CG, Cady WM, Thompson Jr JB, Billings MP (1961) Centennial Geologic Map of Vermont: Vermont Geological Survey, Miscellaneous Map MISCMAP-01, scale 1:250,000

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Ac 58:2325–2332

  • Duchesne L, Ouimet R, Camiré C, Houle D (2001) Seasonal nutrient transfers by foliar resorption, leaching, and litter fall in a northern hardwood forest at lake clair watershed, Quebec. Can J Forest Res 31:333–344. doi:10.1139/x00-183

    Article  CAS  Google Scholar 

  • Fahey TJ, Siccama TG, Driscoll CT, Likens GE, Campbell J, Johnson CE, Battles JJ, Aber JD, Cole JJ, Fisk MC, Groffman PM, Hamburg SP, Holmes RT, Schwarz PA, Yanai RD (2005) The biogeochemistry of carbon at Hubbard brook. Biogeochemistry 75:109–176

    Article  CAS  Google Scholar 

  • Ferrari JB, Sugita S (1996) A spatially explicit model of leaf litter fall in hemlock-hardwood forests. Can J For Res 26:1905–1913

    Article  Google Scholar 

  • Foster DR (1992) Land-use history (1730–1990) and vegetation dynamics in central New England. USA J Ecol 80:753–772

    Article  Google Scholar 

  • Friedland AJ, Miller EK (1999) Major-element cycling in a high-elevation Adirondack forest: patterns and changes, 1986–1996. Ecol Appl 9:958–967

    Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: A. Klute et al., editors, Methods of soil analysis, part 1. 2nd ed. Monogram 9 ASA and SSSA, Madison, WI. p. 404–408

  • Gélinas Y, Lucotte M, Schmit JP (2000) History of the atmospheric deposition of major and trace elements in the industrialized St. Lawrence valley, Quebec. Can Atmos Environ 34:1797–1810

    Article  Google Scholar 

  • Herndon EM, Jin L, Brantley SL (2011) Soils reveal widespread manganese enrichment from industrial inputs. Environ Sci Technol 45:241–247

    Article  CAS  PubMed  Google Scholar 

  • Herndon EM, Jin L, Andrews DM, Eissenstat DM, Brantley SL (2015) Importance of vegetation for manganese cycling in temperate forested watersheds. Glob Biogeochem Cycles 29:160–174. doi:10.1002/2014GB004858

    Article  CAS  Google Scholar 

  • Huang JH, Ilgen G, Matzner E (2011) Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany. Biogeochemistry 103:59–70

    Article  CAS  Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. Forest Sci 49:12–35

    Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Kaste JM, Friedland AJ, Sturup S (2003) Using stable and radioactive isotopes to trace atmospherically-deposited Pb in montane forest soils. Environ Sci Technol 37:3560–3567

    Article  CAS  PubMed  Google Scholar 

  • Kenefic LS, Nyland RD (1999) Sugar maple height-diameter and age-diameter relationships in an uneven-aged northern hardwood stand. North J Appl For 16:43–47

    Google Scholar 

  • Kraepiel AML, Dere AL, Herndon EM, Brantley SL (2015) Natural and anthropogenic processes contributing to metal enrichment in surface soils of central Pennsylvania. Biogeochemistry 123:265–283

    Article  CAS  Google Scholar 

  • Lamson, NI (1987) D.B.H./Crown diameter relationships in mixed Appalachian hardwood stands. USDA Forest Service Research Paper, NE-6 10

  • Lawson ST, Scherbatskoy TD, Malcolm EG, Keeler GJ (2001) Cloud water and throughfall deposition of mercury and trace elements in a high elevation spruce-fir forest at Mt. Mansfield. Vermont J Environ Monit 5:578–583

    Article  Google Scholar 

  • Li J, Richter DB, Mendoza A, Heine P (2008) Four-decade responses of soil trace elements to an aggrading Old-field forest: B, Mn, Zn, Cu, and Fe. Ecology 89:2911–2923

    Article  PubMed  Google Scholar 

  • Likens GE (2015) Chemistry of Bulk Precipitation at HBEF Robert S. Pierce Ecosystem Laboratory Facility from (2050 – 2010). Hubbard Brook Data Archive [Database]. http://www.hubbardbrook.org/data/dataset.php?id = 24 (16 September 2015)

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer-Verlag New York Inc., New York

    Book  Google Scholar 

  • Lovett GM (1994) Atmospheric deposition of nutrients and pollutants in North America: an ecological perspective. Ecol Appl 4:629–650

    Article  Google Scholar 

  • Luyssaert S, Raitio H, Vervaeke P, Mertens J, Lust N (2002) Sampling procedure for the foliar analysis of deciduous trees. J Environ Monit 4:858–864

    Article  CAS  PubMed  Google Scholar 

  • Lyons JB, Bothner WA, Moench RH, Thompson Jr JB (1997) Bedrock Geologic Map of New Hampshire: Reston, VA, U.S. Geological Survey Special Map, 1:250,000, 2 sheets.

  • Miller EK, Friedland AJ (1994) Lead migration in forest soils: response to changing atmospheric inputs. Environ Sci Technol 28:662–669

    Article  CAS  PubMed  Google Scholar 

  • Pratte S, Mucci A, Garneau M (2013) Historical records of atmospheric metal deposition along the St. Lawrence valley (eastern Canada) based on peat bog cores. Atmos Environ 79:831–840

    Article  CAS  Google Scholar 

  • Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • PRISM Climate Group (2012) Prism database: PRISM Climate Group, Oregon State University, Map created 14 October 2012, http://prism.oregonstate.edu

  • Richardson JB, Friedland AJ (2015) Mercury in coniferous and deciduous upland forests in northern New England, USA: implications of climate change. Biogeosciences 12:6737–6749. doi:10.5194/bg-12-6737-2015

    Article  Google Scholar 

  • Richardson JB, Friedland AJ, Engerbretson TR, Kaste JM, Jackson BP (2013) Spatial and vertical distribution of mercury in upland forest soils across the northeastern United States. Environ Pollut 182:127–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JB, Friedland AJ, Kaste JM, Jackson BP (2014) Forest floor lead changes from 1980 to 2011 and subsequent accumulation in the mineral soil across the northeastern United Sates. J Environ Qual 43:926–935. doi:10.2134/jeq2013.10.0435

    Article  CAS  PubMed  Google Scholar 

  • Richardson JB, Donaldson EC, Kaste JM, Friedland AJ (2015) Forest floor lead, copper, and zinc concentrations across the northeastern United States: Synthesizing spatial and temporal responses Sci. Tot Environ 505:851–859

    Article  CAS  Google Scholar 

  • Sarkar S, Ahmed T, Swami K, Judd CD, Bari A, Dutkiewicz VA, Husain L (2015) History of atmospheric deposition of trace elements in lake sediments, ~1880 to 2007. J Geophys Res Atmos 120:5658–5669. doi:10.1002/2015JD023202

    Article  CAS  Google Scholar 

  • Sette CR Jr, Laclau JP, Tomazello Filho M, Moreira RM, Bouillet JP, Ranger J, Almeida JCR (2013) Source-driven remobilizations of nutrients within stem wood in Eucalyptus grandis plantations. Trees 27:827–839

    Article  CAS  Google Scholar 

  • Siccama TG (1974) Vegetation, soil, and climate on green mountains of Vermont. Ecol Monogr 44:325–349

    Article  Google Scholar 

  • Soil Survey Staff (2010) Soil survey staff: keys to soil taxonomy, 11th edn. USDA-Natural Resources Conservation Service, Washington

    Google Scholar 

  • Soil Survey Staff (2014) Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed [4/22/2012]

  • St. Clair SB, Lynch JP (2005) Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: implications for sensitivity to manganese toxicity. Tree Physiol 25:85–92

    Article  CAS  PubMed  Google Scholar 

  • St. Clair SB, Sharpe WE, Lynch JP (2008) Key interactions between nutrient limitation and climatic factors in temperate forests: a synthesis of the sugar maple literature. Can J Forest Res 38:401–414

    Article  Google Scholar 

  • Steinnes E, Friedland AJ (2006) Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environ Rev 14:169–186

    Article  CAS  Google Scholar 

  • Tang G, Beckage B (2010) Projecting the distribution of forests in New England in response to climate change. Divers Distrib 16:144–158

    Article  Google Scholar 

  • Tang G, Beckage B, Smith B (2012) The potential transient dynamics of forests in New England under historical and projected future climate change. Clim Chang 114:357–377

    Article  Google Scholar 

  • Teck RM, Hilt DE (1991) Individual-Tree Diameter Growth Model for the Northeastern United States. Research Paper NE-649. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, 11 pg.Ter-Mikaelian M T, Korzukhin MD 1997 Biomass equations for sixty-five North American tree species. Forest Ecol Manage 97:1–24

  • Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manag 97:1–24

    Article  Google Scholar 

  • van der Heijden G, Legout A, Pollier B, Ranger J, Dambrine E (2014) The dyanimcs of calcium and magnesium inputs by throughfall in a forest ecosystem on base poor soil are very slow and conservative: evidence from an isotopic tracing experiment (26Mg and 44Ca). Biogeochemistry 118:413–442

    Article  Google Scholar 

  • Van Hook RI, Harris WF, Henderson GS (1977) Cadmium, lead, and zinc distributions and cycling in a mixed deciduous forest. Ambio 6:281–286

    Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover and nutrient dynamics of above and belowground detritus of world forests. Adv Ecol Res 15:303–377. doi:10.1016/S0065-2504(08)60122-1

  • Weathers KC, Simkin SM, Lovett GM, Lindberg SE (2006) Empirical modeling of atmospheric deposition in mountainous landscapes. Ecol Appl 16:1590–1607

    Article  PubMed  Google Scholar 

  • Wernsdörfer H, Jonard M, Genet A, Legout A, Nys C, Saint-André L, Ponette Q (2014) Modelling of nutrient concentrations in roundwood based on diameter and tissue proportion: Evidence for an additional site-age effect in the case of Fagus sylvatica. Forest Ecol Manag 330:192–204

    Article  Google Scholar 

  • Whittaker RH, Bormann FH, Likens GE, Siccama TG (1974) The Hubbard brook ecosystem study: forest biomass and production. Ecol Monogr 44:233–254

    Article  Google Scholar 

  • Wislocka M, Krawcyk J, Klink A, Morrison L (2006) Bioaccumulation of heavy metals by selected plant species from uranium mining dumps in the Sudety Mts., Poland. Polish J Environ Stud 15:811–818

    CAS  Google Scholar 

  • Yanai RD, Arthur MA, Acker M, Levine CR, Park BB (2012) Variation in mass and nutrient concentrations in leaf litter across years and sites in a northern hardwood forest. Can J For Res 42:1597–1610. doi:10.1139/X2012-084

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by the Northern Studies Grant/Internship, the E.E. Just Program, the Pearl Professor Fund to Andrew Friedland and the Graduate Alumni Research Award from Dartmouth College to Justin Richardson. The field component and laboratory analyses would not have been possible without the help from James Brofos, Emily Lacroix, and Lars Olaf-Höger. The authors are thankful for the analytical help from Brian Jackson, Janet Towse, Emily Pierson, and Monica Redente at the Dartmouth Trace Element Analysis laboratory. In addition, the friendly reviews by Josef Görres at the University of Vermont and Arnulfo Andrés Aguirre at Cornell University were helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Richardson.

Additional information

Responsible Editor: Yong Chao Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 30 kb)

ESM 2

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, J.B., Friedland, A.J. Influence of coniferous and deciduous vegetation on major and trace metals in forests of northern New England, USA. Plant Soil 402, 363–378 (2016). https://doi.org/10.1007/s11104-016-2805-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2805-5

Keywords

Navigation