Plant and Soil

, Volume 403, Issue 1–2, pp 343–360 | Cite as

Drivers of nitrogen leaching from organic layers in Central European beech forests

  • Martin T. Schwarz
  • Sebastian Bischoff
  • Stefan Blaser
  • Steffen Boch
  • Fabrice Grassein
  • Bernhard Klarner
  • Barbara Schmitt
  • Emily F. Solly
  • Christian Ammer
  • Beate Michalzik
  • Peter Schall
  • Stefan Scheu
  • Ingo Schöning
  • Marion Schrumpf
  • Ernst-Detlef Schulze
  • Jan Siemens
  • Wolfgang Wilcke
Regular Article

Keywords

Terrestrial nitrogen cycling Ecosystem functioning Litter leachate Organic layer Biodiversity Exploratories Deciduous forest 

References

  1. Anderson J P E, Domsch K H (1980) Quantities of plant nutrients in the microbial biomass of selected soils. Soil Sci 130:211–216. doi:10.1097/00010694-198010000-00008 CrossRefGoogle Scholar
  2. Bardgett R D, Chan K F (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–1014. doi:10.1016/S0038-0717(99)00014-0 CrossRefGoogle Scholar
  3. Beese F, van der Ploeg R R (1979) Simulation des Anionen-Transports in ungestörten Bodensäulen unter stationären Fließbedingungen. Z Pflanzenernähr Bodenkd 142:69–85. doi:10.1002/jpln.19791420108 CrossRefGoogle Scholar
  4. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22. doi:10.1016/S0378-1127(99)00294-7 CrossRefGoogle Scholar
  5. Blair B, Parmalee R, Beare M (1990) Decay rates, nitrogen fluxes and decomposer communities of single- and mixed-species foliar litter. Ecology 71:1976–1985. doi:10.2307/1937606 CrossRefGoogle Scholar
  6. Brassard B W, Chen H Y H, Cavard X, Laganiére J, Reich P B, Bergeron Y, Paré D, Yuan Z (2013) Tree species diversity increases fine root productivity through increased soil volume filling. J Ecol 101:210–219. doi:10.1111/1365-2745.12023 CrossRefGoogle Scholar
  7. Brumme R, Khanna P K (2008) Ecological and site historical aspects of. N dynamics and current N status in temperate forests. Global Change Biol 14:125–141. doi:10.1111/j.1365-2486.2007.01460.x Google Scholar
  8. Chamberlain PM, McNamara NP, Chaplow J, Stott AW, Black HIJ (2006) Translocation of surface litter carbon into soil by Collembola. Soil Biol Biochem 38:2655–2664. doi:10.1016/j.soilbio.2006.03.021 CrossRefGoogle Scholar
  9. Curry J P, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiologia 50:463–477. doi:10.1016/j.pedobi.2006.09.001 CrossRefGoogle Scholar
  10. De Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biol 12:1151–1173. doi:10.1111/j.1365-2486.2006.01151.x CrossRefGoogle Scholar
  11. Durka W, Schulze E D, Gebauer G, Voerkeliust S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from15N and18O measurements. Nature 372:765–767. doi:10.1038/372765a0 CrossRefGoogle Scholar
  12. Ehnes R B, Pollierer M M, Erdmann G, Klarner B, Eitzinger B, Digel C, Ott D, Maraun M, Scheu S, Brose U (2014) Lack of energetic equivalence in forest soil invertebrates. Ecology 95:527–537. doi:10.1890/13-0620.1 CrossRefPubMedGoogle Scholar
  13. Fern M (1993) Throughfall measurements of nitrogen and sulphur compounds. Intern J Anal Chem 50:29–43. doi:10.1080/03067319308027581 CrossRefGoogle Scholar
  14. Fornara D, Tilman D, Hobbie S (2009) Linkages between plant functional composition, fine root processes and potential soil. N mineralization rates J Ecol 97(1):48–56. doi:10.1111/j.1365-2745.2008.01453.x CrossRefGoogle Scholar
  15. Frouz J, Livečková M, Albrechtová J, Chroňáková A, Cajthaml T, Pižl V, Háněl L, Stary̌ J, Baldrian P, Lhotáková Z, Šimáčková H, Cepáková Ṡ (2013) Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. For Ecol Manage 309:87–95. doi:10.1016/j.foreco.2013.02.013 CrossRefGoogle Scholar
  16. Gebauer G, Zeller B, Schmidt G, May C, Buchmann N, Colin-Belgrand M, Dambrine E, Martin F, Schulze E D, Bottner P (2000) The fate of15N-labelled nitrogen inputs to coniferous and broadleaf forests. In: Schulze E D (ed) Carbon and nitrogen cycling in European Forest Ecosystems, Ecological Studies, 142, Springer-Verlag, Berlin, Heidelberg, pp 144–170Google Scholar
  17. Gerrits A M J, Pfister L, Savenije H H G (2010) Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol Proc 24:3011–3025. doi:10.1002/hyp.7712 CrossRefGoogle Scholar
  18. Hector A, Beale A J, Minns A, Otway S J, Lawton J H (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371. doi:10.1034/j.1600-0706.2000.900217.x CrossRefGoogle Scholar
  19. Hentschel K, Borken W, Matzner E (2008) Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil. J Plant Nutr Soil Sci 171:699–706. doi:10.1002/jpln.200700154 CrossRefGoogle Scholar
  20. Forests ICP (2010) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests, Hamburg, Germany. http://www.icp-forests.org/Manual.htm
  21. IUSS Working group WRB (2006) Guidelines for soil description, 4th edn. Food and Agricultural Organisation of the United Nations, RomeGoogle Scholar
  22. Jandl R, Kopeszki H, Glatzel G (1997) Effect of a dense Allium ursinum (L.) ground cover on nutrient dynamics and mesofauna of a Fagus sylvatica (L.) woodland. Plant Soil 189:245–255. doi:10.1023/A:1004223011834 CrossRefGoogle Scholar
  23. Judd K E, Likens G E, Groffman P M (2007) High nitrate retention during winter in soils of the Hubbard Brook Experimental Forest. Ecosystems 10:217–225. doi:10.1007/s10021-007-9027-x CrossRefGoogle Scholar
  24. Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–1255. doi:10.1890/0012-9658(2006)87%5B1244:NCFNAE%5D2.0.CO;2 CrossRefPubMedGoogle Scholar
  25. Kaiser C, Fuchslueger L, Koranda M, Gorfer M, Stange CF, Kitzler B, Rasche F, Strauss J, Sessitsch A, Zechmeister-Boltenstern S, Richter A (2011) Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology 92:1036–1051. doi:10.1890/10-1011.1 CrossRefPubMedGoogle Scholar
  26. Kammer A, Schmidt M W, Hagedorn F (2012) Decomposition pathways of13C-depleted leaf litter in forest soils of the Swiss Jura. Biogeochemistry 108:395–411. doi:10.1007/s10533-011-9607-x CrossRefGoogle Scholar
  27. Khanna P, Fortmann H, Meesenburg H, Eichhorn J, Meiwes K (2009) Biomass and element content of foliage and aboveground litterfall on the three long-term experimental beech sites: dynamics and significance. In: Brumme R, Khanna P K (eds) Functioning and Management of European Beech Ecosystems, Ecological Studies, vol 208, Springer-Verlag, Berlin, Heidelberg, pp 183–205Google Scholar
  28. Knops J M H, Bradley K L, Wedin D A (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466. doi:10.1046/j.1461-0248.2002.00332.x CrossRefGoogle Scholar
  29. Kooijman A, Kooijman-Schouten M, Martinez-Hernandez G (2008) Alternative strategies to sustain N-fertility in acid and calcaric beech forests: low microbial N-demand versus high biological activity. Basic Appl Ecol 9:410–421. doi:10.1016/j.baae.2007.05.004 CrossRefGoogle Scholar
  30. Levia D, Frost E (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29. doi:10.1016/S0022-1694(02)00399-2 CrossRefGoogle Scholar
  31. MacDonald J A, Dise N B, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biol 8:1028–1033. doi:10.1046/j.1365-2486.2002.00532.x CrossRefGoogle Scholar
  32. Michalzik B, Dorsch T, Matzner E (1997) Stability of dissolved organic nitrogen (DON) and mineral nitrogen in bulk precipitation and throughfall. Z Pflanzenernähr Bodenkd 160:433–434. doi:10.1002/jpln.19971600314 CrossRefGoogle Scholar
  33. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Millennium Ecosystem Assessment series, Island Press, Washington D.CGoogle Scholar
  34. Molotch N P, Blanken P D, Link T E (2011) Snow: Hydrological and Ecological Feedbacks in Forests. In: Levia D F, Carlyle-Moses D, Tanaka T (eds) Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, Ecological Studies, vol 216, Springer-Verlag, Berlin, Heidelberg, pp 541–555Google Scholar
  35. Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219. doi:10.1111/j.1461-0248.2011.01691.x CrossRefPubMedGoogle Scholar
  36. Muller R N, Bormann F H (1976) Role of Erythronium americanum Ker. in energy flow and nutrient dynamics of a northern hardwood forest ecosystem. Science 193:1126–1128. doi:10.1126/science.193.4258.1126 CrossRefPubMedGoogle Scholar
  37. Nadelhoffer K J, Downs M R, Fry B, Aber J D, Magill A H, Melillo J M (1995) The fate of15N-labelled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oecologia 103:292–301. doi:10.1007/BF00328617 CrossRefGoogle Scholar
  38. Nadelhoffer KJ, Downs MR, Fry B (1999) Sinks for15N-enriched addtions to an oak forest and a red pine plantation. Ecol Appl 9:72–86. doi:10.1890/1051-0761(1999)009%5B0072:SFNEAT%5D2.0.CO;2 CrossRefGoogle Scholar
  39. Olsson M, Falkengren-Grerup U (2003) Partitioning of nitrate uptake between trees and understory in oak forests. For Ecol Manage 179:311–320. doi:10.1016/S0378-1127(02)00544-3 CrossRefGoogle Scholar
  40. Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. doi:10.1111/j.1466-8238.2010.00592.x CrossRefGoogle Scholar
  41. Park J H, Kalbitz K, Matzner E (2002) Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor. Soil Biol Biochem 34:813–822. doi:10.1016/S0038-0717(02)00011-1 CrossRefGoogle Scholar
  42. Pollierer M M, Langel R, Körner C, Maraun M, Scheu S (2007) The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol Lett 10:729–736. doi:10.1111/j.1461-0248.2007.01064.x CrossRefPubMedGoogle Scholar
  43. Prietzel J, Bachmann S (2012) Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in southern Germany. For Ecol Manage 269:134–148. doi:10.1016/j.foreco.2011.12.034 CrossRefGoogle Scholar
  44. Rosenkranz S, Wilcke W, Eisenhauer N, Oelmann Y (2012) Net ammonification as influenced by plant diversity in experimental grasslands. Soil Biol Biochem 48:78–87. doi:10.1016/j.soilbio.2012.01.008 CrossRefGoogle Scholar
  45. Schall P, Ammer C (2013) How to quantify forest management intensity in Central European forests. Eur J Forest Res 102:379–396. doi:10.1007/s10342-013-0681-6 CrossRefGoogle Scholar
  46. Scheu S (1987) The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia 72:197–201. doi:10.1007/BF00379267 CrossRefGoogle Scholar
  47. Scheu S (1997) Effects of litter (beech and stinging nettle) and earthworms (Octolasion lacteum) on carbon and nutrient cycling in beech forests on a basalt-limestone gradient: a laboratory experiment. Biol Fertil Soils 24:384–393. doi:10.1007/s003740050262 CrossRefGoogle Scholar
  48. Schulze I M, Bolte A, Schmidt W, Eichhorn J, Brumme R, Khanna P (2009) Phytomass, litter and net primary production of herbaceous layer. In: Brumme R, Khanna P (eds) Functioning and Management of European Beech Ecosystems, Ecological Studies, vol 208, Springer-Verlag, Berlin, Heidelberg, pp 155–181Google Scholar
  49. Schwarz M T, Bischoff S, Blaser S, Boch S, Schmitt B, Thieme L, Fischer M, Michalzik B, Schulze E D, Siemens J, Wilcke W (2014) More efficient aboveground nitrogen use in more diverse Central European forest canopies. For Ecol Manage 313:274–282. doi:10.1016/j.foreco.2013.11.021 CrossRefGoogle Scholar
  50. Solinger S, Kalbitz K, Matzner E (2001) Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest. Biogeochemistry 55:327–349. doi:10.1023/A:1011848326013 CrossRefGoogle Scholar
  51. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720. doi:10.1038/379718a0 CrossRefGoogle Scholar
  52. Tørseth K, Aas W, Breivik K, Fjæraa AM, Fiebig M, Hjellbrekke AG, Myhre CL, Solberg S, Yttri KE (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atm Chem Phys 12:5447–5481. doi:10.5194/acp-12-5447-2012 CrossRefGoogle Scholar
  53. Verhoef HA, Brussaard L (1990) Decomposition and nitrogen mineralization in natural and agro-ecosystems: the contribution of soil animals . Biogeochemistry 11:175–211. doi:10.1007/BF00004496 CrossRefGoogle Scholar
  54. Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48. doi:10.1016/j.foreco.2007.08.015 CrossRefGoogle Scholar
  55. Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258. doi:10.2307/3546010 CrossRefGoogle Scholar
  56. Xiong Y, Zeng H, Xia H, Guo D (2014) Interactions between leaf litter and soil organic matter on carbon and nitrogen mineralization in six forest litter-soil systems. Plant Soil 379:217–229. doi:10.1007/s11104-014-2033-9 CrossRefGoogle Scholar
  57. Zak D R, Holmes W E, Burton A J, Pregitzer K S, Talhelm A F (2008) Simulated atmospheric NO\(_{3}^{-}\)-N deposition increases soil organic matter by slowing decomposition. Ecol Appl 18:2016–2027. doi:10.1890/07-1743.1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martin T. Schwarz
    • 1
    • 10
  • Sebastian Bischoff
    • 2
  • Stefan Blaser
    • 3
  • Steffen Boch
    • 3
  • Fabrice Grassein
    • 3
  • Bernhard Klarner
    • 4
  • Barbara Schmitt
    • 3
  • Emily F. Solly
    • 5
  • Christian Ammer
    • 6
  • Beate Michalzik
    • 2
  • Peter Schall
    • 6
  • Stefan Scheu
    • 4
  • Ingo Schöning
    • 6
  • Marion Schrumpf
    • 6
  • Ernst-Detlef Schulze
    • 6
  • Jan Siemens
    • 8
  • Wolfgang Wilcke
    • 9
  1. 1.Institute of GeographyUniversity of BerneBerneSwitzerland
  2. 2.Institute of GeographyFriedrich Schiller University of JenaJenaGermany
  3. 3.Institute of Plant Sciences and Botanical Garden University of BerneBerneSwitzerland
  4. 4.J.F. Blumenbach Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
  5. 5.Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLBirmensdorfSwitzerland
  6. 6.Faculty of Forest Sciences, Silviculture and Forest Ecology of the Temperate ZonesGeorg August University GöttingenGöttingenGermany
  7. 7.Max Planck Institute for BiogeochemistryJenaGermany
  8. 8.Institute of Soil Science and Soil ConservationJustus-Liebig-University of GiessenGiessenGermany
  9. 9.Institute of Geography and GeoecologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  10. 10.wasser/schnee/lawinen Ingenieurbüro André Burkard AGBrig-GlisSwitzerland

Personalised recommendations