Plant and Soil

, Volume 402, Issue 1–2, pp 331–342 | Cite as

Mycotoxin contamination and its regulation by the earthworm species Lumbricus terrestris in presence of other soil fauna in an agroecosystem

  • Friederike Wolfarth
  • Stefan Schrader
  • Elisabeth Oldenburg
  • Joachim Brunotte
Regular Article


Background and aims

In 2011 and 2013, mesocosm-studies were conducted in the field to assess the degradation performance of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) on mycotoxin-contaminated crop residues. The aim of the study was to investigate the potential of anecic earthworms in the regulation of the mycotoxin deoxynivalenol (DON) and whether the degradation capacity is influenced by the presence of collembolans and nematodes.


After 4 and 8 weeks, DON concentrations in residual straw and in soil samples of all faunal treatments (containing earthworms, collembolans and nematodes in different combination) and the non-faunal control treatments were determined using an ELISA-method.


After 4 weeks, the DON concentration in straw decreased in all treatments: faunal treatments 2011: 97–99 %; 2013: 78–94 %; non faunal treatments 2011: 88 %; 2013: 68 %. After 8 weeks a further decline of DON concentrations was measured in all faunal treatments (2011: 58–91 %; 2013: 50–86 %). DON concentration of the non-faunal treatments increased during the final four weeks. In soil the DON concentration was below quantification limits (<0.037 mg kg−1).


This study revealed L. terrestris as the driver of the degradation process. The presence of collembolans and nematodes did not affect its degradation capacity. Earthworms contribute to a sustainable control of mycotoxins in wheat straw, thus reducing the risk of environmental pollution as an ecosystem service.


Soil health Ecosystem services Plant pathogen control Mycotoxin degradation Conservation tillage Functional soil biodiversity 



We thank Prof. Dr. Liliane Ruess and Michael Ackermann (HU Berlin) for providing the mass cultures of A. saprophilus and their valuable advice for the breeding procedure. Furthermore, the excellent technical assistance of Sabine El Sayed, Berthold Ortmeier, Evelin Schummer, Anke Mundt, Sina Wedekind, Marco Hornbostel, Svenja Wiedenroth, Annika Rickmann and Sarah Havertz is gratefully acknowledged. We thank Jan. Bug from the Institute of Physical Geography and Landscape Ecology, University of Hannover for providing the climate data of the field site. The valuable advice of three anonymous reviewers for improving our manuscript is very gratefully acknowledged. The study was supported by the German Federal Environmental Foundation, Deutsche Bundesstiftung Umwelt (DBU), by providing a personal grant to Friederike Wolfarth.


  1. Bianchini A, Horsley R, Jack MM, Kobielush B, Ryu D, Tittlemier S, Wilson WW, Abbas HK, Abel S, Harrison G, Miller JD, Shier WT, Weaver G (2015) DON occurrence in grains: a North American perspective. Cereal Food World 60:32–56. doi: 10.1094/CFW-60-1-0032 CrossRefGoogle Scholar
  2. Brown GG, Barois I, Lavelle P (2000) Regulations of organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198. doi: 10.1016/S1164-5563(00)01062-1 CrossRefGoogle Scholar
  3. Bucheli TD, Wettstein FE, Hartmann N, Erbs M, Vogelgsang S, Forrer HR, Schwarzenbach RP (2008) Fusarium mycotoxins: overlooked aquatic micropollutants? J Agr Food Chem 56:1029–1034. doi: 10.1021/jf073082k CrossRefGoogle Scholar
  4. Cheatham MR, Rouse NM, Esker PD, Ignacio S, Pradel W, Raymundo R, Sparks AH, Forbes GA, Gordon TR, Garret KA (2009) Beyond yield: plant disease in the context of ecosystem services. Phytopathology 99:1228–1236. doi: 10.1094/PHYTO-99-11-1228 CrossRefPubMedGoogle Scholar
  5. Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868. doi: 10.1016/j.ecolecon.2010.05.002 CrossRefGoogle Scholar
  6. Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11. doi: 10.1016/S0929-1393(00)00067-6 CrossRefGoogle Scholar
  7. Elmer WH (2009) Influence of earthworm activity on soil microbes and soilborne diseases of vegetables. Plant Dis 93:175–179. doi: 10.1094/PDIS-93-2-0175 CrossRefGoogle Scholar
  8. Elmer WH, Ferrandino FJ (2009) Suppression of verticillium wilt of eggplant by earthworms. Plant Dis 93:485–489. doi: 10.1094/PDIS-93-5-0485 CrossRefGoogle Scholar
  9. Federal Statistical Office (2010) Statistical yearbook 2010 for the Federal Republic of Germany including “international tables”, Wiesbaden, GermanyGoogle Scholar
  10. Fornelli F, Minervini F, Logrieco A (2004) Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF-9). J Invertebr Pathol 85:74–79CrossRefPubMedGoogle Scholar
  11. Fründ H-C, Butt K, Capowiez Y, Eisenhauer N, Emmerling C, Ernst G, Potthoff M, Schädler M, Schrader S (2010) Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiologia 53:119–125. doi: 10.1016/j.pedobi.2009.07.002 CrossRefGoogle Scholar
  12. Gautam P, Dill-Macky R (2012) Free water can leach mycotoxins from Fusarium-infected wheat heads. J Phythopathol 160:484–490. doi: 10.1111/j.1439-0434.2012.01928.x CrossRefGoogle Scholar
  13. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525. doi: 10.1111/j.1364-3703.2004.00252.x CrossRefPubMedGoogle Scholar
  14. Gupta MC (1986) Biological control of Fusarium moniliforme Sheldon and Pythium butleri subramaniam by Aphelenchus avenae Bastian in chitin and cellulose-amended soils. Soil Biol Biochem 18:327–329. doi: 10.1016/0038-0717(86)90069-6 CrossRefGoogle Scholar
  15. Hartmann N, Erbs M, Forrer H-R, Vogelgsang S, Wettstein FE, Schwarzenbach RP, Bucheli TD (2008a) Occurrence of zearalenone on Fusarium graminearum infected wheat and maize fields in crop organs, soil, and drainage water. Environ Sci Technol 42:5455–5460. doi: 10.1021/es8007326 CrossRefPubMedGoogle Scholar
  16. Hartmann N, Erbs M, Wettstein FE, Hörger CC, Vogelgsang S, Forrer H-R, Schwarzenbach RP, Bucheli TD (2008b) Environmental exposure to estrogenic and other myco- and phytotoxins. Chimia 62:364–367. doi: 10.2533/chimia.2008.364 CrossRefGoogle Scholar
  17. Ikunaga Y, Sato I, Grond S, Numaziri N, Yashida S, Yamaya H, Hiradate S, Hasegawa M, Toshima H, Koitabashi M, Ito M, Karlovsky P, Tsushima S (2011) Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Appl Microbiol Biot 89:419–427. doi: 10.1007/s00253-010-2857-z CrossRefGoogle Scholar
  18. Karlen DL, Varvel GE, Bullock DG, Cruse RM (1994) Crop rotations for the 21st century. Adv Agron 53:1–45. doi: 10.1016/S0065-2113(08)60611-2 CrossRefGoogle Scholar
  19. Klironomos JN, Kendrick B (1995) Relationship among microarthropods, fungi, and their environment. Plant Soil 170:183–197. doi: 10.1007/BF02183066 CrossRefGoogle Scholar
  20. Klironomos JN, Widden P, Deslandes I (1992) Feeding preferences of the collembolan Folsomia candida in relation to microfaunal succession and decaying litter. Soil Biol Biochem 24:685–692. doi: 10.1016/0038-0717(92)90047-2 CrossRefGoogle Scholar
  21. Kolpin DW, Schenzel J, Meyer MT, Phillips PJ, Hubbard LE, Scott T-M, Bucheli TD (2014) Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams. Sci Total Environ 470-471:669–676. doi: 10.1016/j.scitotenv.2013.09.062 CrossRefPubMedGoogle Scholar
  22. Lartey RT, Curl EA, Peterson CM (1994) Interactions of mycophagous collembola and biological control fungi in the suppression of Rhizoctonia solani. Soil Biol Biochem 26:81–88. doi: 10.1016/0038-0717(94)90198-8 CrossRefGoogle Scholar
  23. Lemanceau P, Alabouvette C (1993) Suppression of fusarium wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Sci Techn 3:219–234. doi: 10.1080/09583159309355278 CrossRefGoogle Scholar
  24. Leplat J, Friberg H, Abid M, Steinberg C (2013) Survival of Fusarium graminearum, the causal agent of fusarium head blight. a review. Agron Sustain Dev 33:97–111. doi: 10.1007/s13593-012-0098-5 CrossRefGoogle Scholar
  25. Leslie JF, Summerell BA (2013) An overview of Fusarium. In: Brown and Proctor. In: Fusarium: Genomics, Molecular and Cellular Biology. Caister Academic Press, USA, pp. 1–10Google Scholar
  26. MacFadyen A (1961) Improved funnel-type extractors for soil arthropods. J Anim Ecol 30:171–184. doi: 10.2307/2120 CrossRefGoogle Scholar
  27. Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to fusarium wilt. The ISME Journal 3:977–991. doi: 10.1038/ismej.2009.33 CrossRefPubMedGoogle Scholar
  28. Moody SA, Briones TG, Dighton J (1995) Selective consumption of decomposing wheat straw by earthworms. Soil Biol Biochem 27:1209–1213. doi: 10.1016/0038-0717(95)00024-9 CrossRefGoogle Scholar
  29. Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33:161–168.Google Scholar
  30. Okada H (2006) Ecology of fungivorous nematodes and their use for suppression of plant diseases. B Nat Agric Res C, Tohoku, 105:155–197. (published in Japanese with English summary)Google Scholar
  31. Oldenburg E, Kramer S, Schrader S, Weinert J (2008) Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and deoxynivalenol-contaminated wheat straw. Soil Biol Biochem 40:3049–3053. doi: 10.1016/j.soilbio.2008.09.004 CrossRefGoogle Scholar
  32. Pestka JJ (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Tech 137:283–298. doi: 10.1016/j.anifeedsci.2007.06.006 CrossRefGoogle Scholar
  33. Pfeffer SP, Filser J (2010) Attraction to prey and prey-associated odours by the predatory mite Hypoaspis aculeifer in a soil experimental system. Soil Biol Biochem 42:1355–1357. doi: 10.1016/j.soilbio.2010.03.018 CrossRefGoogle Scholar
  34. Rotter BA, Preluisky DB, Pestka JJ (1996) Toxicology of deoxynivalenol (vomitoxin). J Toxicol Env Health 48:1–34. doi: 10.1080/009841096161447 CrossRefGoogle Scholar
  35. Ruess L, Häggblom MM, Zapata EJG, Dighton J (2002) Fatty acids of fungi and nematodes – possible biomarkers in the soil food chain? Soil Biol Biochem 34:745–756. doi: 10.1016/S0038-0717(01)00231-0 CrossRefGoogle Scholar
  36. Sabatini MA, Innocenti G (2001) Effects of collembola on plant-pathogenic fungus interactions in simple experimental systems. Biol Fert Soils 33:62–66. doi: 10.1007/s003740000290 CrossRefGoogle Scholar
  37. Schrader S, Kramer S, Oldenburg E, Weinert J (2009) Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw. Mycotox Res 25:53–58. doi: 10.1007/s12550-009-0007-1 CrossRefGoogle Scholar
  38. Schrader S, Seibel C (2001) Impact of cultivation management in an agroecosystem on hot spot effects of earthworm middens. Eur J Soil Biol 37:309–313. doi: 10.1016/S1164-5563(01)01102-5 CrossRefGoogle Scholar
  39. Shima J, Takase S, Takahashi Y, Iwai Y, Fujimoto H, Yamazaki M, Ochi K (1997) Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Appl Environ Microb 63:3825–3830Google Scholar
  40. Stinner BR, Crossley Jr DA (1982) Nematodes in no-tillage agroecosystems. In: Freckman DW (ed) Nematodes in soil ecosystems. University of Texas Press, Austin, pp. 14–28Google Scholar
  41. Thiele-Bruhn S, Bloem J, de Vries FT, Kalbitz K, Wagg C (2012) Linking soil biodiversity and agricultural soil management. Curr Opin Environ Sustain 4:523–528. doi: 10.1016/j.cosust.2012.06.004 CrossRefGoogle Scholar
  42. Tischler W (1965) Agrarökologie. Fischer, JenaGoogle Scholar
  43. van Vliet PCJ, Beare MH, Coleman DC, Hendrix PF (2004) Effects of enchytraeids (Annelida: oligochaeta) on soil carbon and nitrogen dynamics in laboratory incubations. Appl Soil Ecol 25:147–160. doi: 10.1016/j.apsoil.2003.08.004 CrossRefGoogle Scholar
  44. Vogelgsang S, Hecker A, Musa T, Dorn B, Forrer H-R (2011) On-farm experiments over 5 years in a grain maize/winter wheat rotation: effect of maize residue treatments on Fusarium graminearum infection and deoxynivalenol contamination in wheat. Mycotox Res 7:81–96. doi: 10.1007/s12550-010-0079-y CrossRefGoogle Scholar
  45. Wolfarth F, Schrader S, Oldenburg E, Weinert J, Brunotte J (2011a) Earthworms promote the reduction of Fusarium biomass and deoxynivalenol content in wheat straw under field conditions. Soil Biol Biochem 43:1858–1865. doi: 10.1016/j.soilbio.2011.05.002 CrossRefGoogle Scholar
  46. Wolfarth F, Schrader S, Oldenburg E, Weinert J (2011b) Contribution of the endogeic earthworm species Aporrectodea caliginosa to the degradation of deoxynivalenol and Fusarium-biomass in wheat straw. Mycotox Res 27:215–220. doi: 10.1007/s12550-011-0098-3 CrossRefGoogle Scholar
  47. Wolfarth F, Schrader S, Oldenburg E, Weinert J (2013) Nematode-collembolan-interaction promotes the degradation of Fusarium biomass and deoxynivalenol according to soil texture. Soil Biol Biochem 57:903–910. doi: 10.1016/j.soilbio.2012.11.001 CrossRefGoogle Scholar
  48. Wolfarth F, Wedekind S, Schrader S, Oldenburg E, Brunotte J (2015) Regulation of the mycotoxin deoxynivalenol by Folsomia candida (collembola) and Aphelenchoides saprophilus (nematoda) in an on-farm experiment. Pedobiologia 58:41–47. doi: 10.1016/j.pedobi.2015.01.003 CrossRefGoogle Scholar
  49. Wurst S, De Deyn GB, Orwin K (2012) Soil biodiversity and functions. In: Wall DH et al. (eds) Soil Ecology And Ecosystem Services. Oxford University Press, Oxford, pp. 28–44CrossRefGoogle Scholar
  50. Yeates GW, Bongers T (1999) Nematode diversity in agroecosystems. Agric Ecosyst Environ 74:113–135. doi: 10.1016/S0167-8809(99)00033-X CrossRefGoogle Scholar
  51. Zhang W, Ricketts TH, Kremen C, Carney K, Swinton CM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260. doi: 10.1016/j.ecolecon.2007.02.024 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Friederike Wolfarth
    • 1
  • Stefan Schrader
    • 1
  • Elisabeth Oldenburg
    • 2
  • Joachim Brunotte
    • 3
  1. 1.Johann Heinrich von Thünen-Institute (TI) - Federal Research Institute for Rural Areas, Forestry and FisheriesInstitute of BiodiversityBraunschweigGermany
  2. 2.Julius Kühn-Institute (JKI) - Federal Research Institute for Cultivated PlantsInstitute for Plant Protection in Field Crops and GrasslandBraunschweigGermany
  3. 3.Johann Heinrich von Thünen-Institute (TI) - Federal Research Institute for Rural Areas, Forestry and FisheriesInstitute of Agricultural TechnologyBraunschweigGermany

Personalised recommendations