Plant and Soil

, Volume 400, Issue 1–2, pp 193–207 | Cite as

Ecological role of bacterial inoculants and their potential impact on soil microbial diversity

  • Adriana Ambrosini
  • Rocheli de Souza
  • Luciane M. P. Passaglia
Regular Article



Microbial inoculants are an alternative method of increasing crop productivity that can reduce the use of chemical fertilizers, which is one of the more controversial agricultural practices that affect the environment. Beneficial bacteria, collectively known as plant growth-promoting bacteria (PGPB), enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms. Bacterial inoculation efficiency is associated with the beneficial features of the inoculated bacterium, as well as with the complex network of interactions occurring in the soil.


Beneficial bacteria have previously been examined for interactions with different plant hosts, soil types, and agricultural practices, but there is limited information concerning the potential effects of the release of microorganisms on soil functionality. Despite the plant growth promotion characteristics, the survival, abundance, and persistence of inoculant in soil or plant roots are characteristics that could potentially lead to its invasiveness. Inoculants can also interfere with soil health and microbial and faunal community composition.


This review presents an overview of plant-PGPB interactions and their impacts on microbial communities, hypothesizing about the potential of these interactions to promote positive disturbances in soil, mainly in poor environments. The inoculation of free-living bacteria seems to cause a short-term impact to agricultural soils, while rhizobia-based inoculants or bacterial inoculations performed under stress conditions are long-term processes. However, there is great variability amongst results concerning the effects of bacterial inoculation into different plant and soil conditions.


PGPB Free-living bacteria Rhizobia Disturbance Impact Microbial diversity 



We thank to “Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul” and “Conselho Nacional de Desenvolvimento Científico e Tecnológico - Instituto Nacional de Ciência e Tecnologia de Fixação Biológica do Nitrogênio”, Brazil.


  1. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74(1):19–31. doi: 10.1016/S0167-8809(99)00028-6 CrossRefGoogle Scholar
  2. Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LMP (2012) Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356:245–264. doi: 10.1007/s11104-011-1079-1 CrossRefGoogle Scholar
  3. Babić KH, Schauss K, Hai B, Sikora S, Redžepović S, Radl V, Schloter M (2008) Influence of different Sinorhizobium meliloti inocula on abundance of genes involved in nitrogen transformations in the rhizosphere of alfalfa (Medicago sativa L.). Environ Microbiol 10(11):2922–2930. doi: 10.1111/j.1462-2920.2008.01762.x PubMedCrossRefGoogle Scholar
  4. Bacilio M, Rodriguez H, Moreno M, Hernandez JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40(3):188–193. doi: 10.1007/s00374-004-0757-z Google Scholar
  5. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. doi: 10.1111/j.1365-3040.2009.01926.x PubMedCrossRefGoogle Scholar
  6. Bai S, Li J, He Z et al (2013) GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves. Appl Microbiol Biotechnol 97(15):7035–7048. doi: 10.1007/s00253-012-4496-z PubMedCrossRefGoogle Scholar
  7. Bakhoum N, Ndoye F, Kane A et al (2012) Impact of rhizobial inoculation on Acacia senegal (L.) Willd. growth in greenhouse and soil functioning in relation to seed provenance and soil origin. World J Microbiol Biotechnol 28(7):2567–2579. doi: 10.1007/s11274-012-1066-6 PubMedCrossRefGoogle Scholar
  8. Bao Z, Sasaki K, Okubo T et al (2013) Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field. Microbes Environ 28(4):487–490. doi: 10.1264/jsme2.ME13049 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Barassi CA, Sueldo RJ, Creus CM, Carrozzi LE, Casanovas EM, Pereyra MA (2007) Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dyn Soil Dyn Plant 1:68–82Google Scholar
  10. Bashan Y, Puente ME, Rodriguez-Mendoza MN, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61(5):1938–1945PubMedCentralPubMedGoogle Scholar
  11. Bashan LE, Hernandez JP, Nelson KN, Bashan Y, Maier RM (2010) Growth of quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure. Microb Ecol 60(4):915–927. doi: 10.1007/s00248-010-9713-7 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. doi: 10.1007/s11104-013-1956-x CrossRefGoogle Scholar
  13. Baudoin E, Nazaret S, Mougel C, Ranjard L, Moënne-Loccoz Y (2009) Impact of inoculation with the phytostimulatory PGPB Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol Biochem 41(2):409–413. doi: 10.1016/j.soilbio.2008.10.015 CrossRefGoogle Scholar
  14. Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433. doi: 10.1016/j.pbi.2004.05.008 PubMedCrossRefGoogle Scholar
  15. Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110(17):E1621–E1630. doi: 10.1073/pnas.1218984110 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. doi: 10.1016/j.tplants.2012.04.001 PubMedCrossRefGoogle Scholar
  17. Berga M, Székely AJ, Langenheder S (2012) Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE 7(5), e36959. doi: 10.1371/journal.pone.0036959 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Bissett A, Richardson AE, Baker G, Thrall PH (2011) Long-term land use effects on soil microbial community structure and function. Appl Soil Ecol 51:66–78. doi: 10.1016/j.apsoil.2011.08.010 CrossRefGoogle Scholar
  19. Björklöf K, Sen R, Jørgensen KS (2003) Maintenance and impacts of an inoculated mer/luc-tagged Pseudomonas fluorescens on microbial communities in birch rhizospheres developed on humus and peat. Microb Ecol 45:39–52. doi: 10.1007/s00248-002-2018-8 PubMedGoogle Scholar
  20. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162(3):617–631. doi: 10.1111/j.1469-8137.2004.01066.x CrossRefGoogle Scholar
  21. Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73(16):5308–5319. doi: 10.1128/AEM.00324-07 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31(3):461–477. doi: 10.1007/s00299-011-1165-0 PubMedCrossRefGoogle Scholar
  23. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383(1–2):3–41. doi: 10.1007/s11104-014-2131-8 CrossRefGoogle Scholar
  24. Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the AzospirillumOryza sativa association. Phytochemistry 87:65–77. doi: 10.1016/j.phytochem.2012.11.009 PubMedCrossRefGoogle Scholar
  25. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8(2), e55731. doi: 10.1371/journal.pone.0055731 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Chowdhury SP, Dietel K, Rändler M, Schmid M, Junge H, Borriss R, Hartmann A, Grosch R (2013) Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 8(7), e68818. doi: 10.1371/journal.pone.0068818 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ciccillo F, Fiore A, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (2002) Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environ Microbiol 4(4):238–245. doi: 10.1046/j.1462-2920.2002.00291.x PubMedCrossRefGoogle Scholar
  28. Clark GF (2013) Biodiversity–invasibility mechanisms are mediated by niche dimensionality. Funct Ecol 27(1):5–6. doi: 10.1111/1365-2435.12031 CrossRefGoogle Scholar
  29. Cornforth DM, Foster KR (2013) Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol 11(4):285–293. doi: 10.1038/nrmicro2977 PubMedCrossRefGoogle Scholar
  30. Costa PB, Granada CE, Ambrosini A, Moreira F, Souza R, Passos JFM, Arruda L, Passaglia LMP (2014) A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PLoS One 9, e116020. doi: 10.1371/journal.pone.0116020 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Crisóstomo JA, Rodríguez-Echeverría S, Freitas H (2013) Co-introduction of exotic rhizobia to the rhizosphere of the invasive legume Acacia saligna, an intercontinental study. Appl Soil Ecol 64:118–126. doi: 10.1016/j.apsoil.2012.10.005 CrossRefGoogle Scholar
  32. Crook MB, Lindsay DP, Biggs MB et al (2012) Rhizobial plasmids that cause impaired symbiotic nitrogen fixation and enhanced host invasion. Mol Plant Microbe Interact 25(8):1026–1033. doi: 10.1094/MPMI-02-12-0052-R PubMedCentralPubMedCrossRefGoogle Scholar
  33. de Salamone IEG, Di Salvo LP, Ortega JSE, Sorte PMFB, Urquiaga S, Teixeira KRS (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336(1–2):351–362. doi: 10.1007/s11104-010-0487-y CrossRefGoogle Scholar
  34. De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281. doi: 10.1016/S0065-2296(09)51006-3 CrossRefGoogle Scholar
  35. de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang 2(4):276–280. doi: 10.1038/nclimate1368 CrossRefGoogle Scholar
  36. de Vrieze J (2015) The littlest farmhands. Science 349(6249):680–683. doi: 10.1126/science.349.6249.680 PubMedCrossRefGoogle Scholar
  37. Denton MD, Pearce DJ, Peoples MB (2013) Nitrogen contributions from faba bean (Vicia faba L.) reliant on soil rhizobia or inoculation. Plant Soil 365(1–2):363–374. doi: 10.1007/s11104-012-1393-2 CrossRefGoogle Scholar
  38. Derpsch R, Franzluebbers AJ, Duiker SW, Reicosky DC, Koeller K, Friedrich T, Sturny WG, Sá JCM, Weiss K (2014) Why do we need to standardize no-tillage research? Soil Tillage Res 137:16–22. doi: 10.1016/j.still.2013.10.002 CrossRefGoogle Scholar
  39. Ding GC, Piceno YM, Heuer H et al (2013) Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem. PLoS ONE 8(3), e59497. doi: 10.1371/journal.pone.0059497 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Dornelas M (2010) Disturbance and change in biodiversity. Philos Trans R Soc Lond B Biol Sci 365(1558):3719–3727. doi: 10.1098/rstb.2010.0295 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Edwards CA (2002) Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. Eur J Soil Biol 38(3):225–231. doi: 10.1016/S1164-5563(02)01150-0 CrossRefGoogle Scholar
  42. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant–soil system. Annu Rev Environ Resour 30:75–115. doi: 10.1146/ CrossRefGoogle Scholar
  43. Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol 27(1):282–288. doi: 10.1111/j.1365-2435.2012.02060.x CrossRefGoogle Scholar
  44. Enwall K, Philippot L, Hallin S (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71(12):8335–8343. doi: 10.1128/AEM.71.12.8335-8343.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Erlacher A, Cardinale M, Grosch R, Grube M, Berg G (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5(175):1–8. doi: 10.3389/fmicb.2014.00175 Google Scholar
  46. Fasciglione G, Casanovas EM, Yommi A, Sueldo RJ, Barassi CA (2012) Azospirillum improves lettuce growth and transplant under saline conditions. J Sci Food Agric 92(12):2518–2523. doi: 10.1002/jsfa.5661 PubMedCrossRefGoogle Scholar
  47. Felici C, Vettori L, Giraldi E, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, Nuti M (2008) Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 40(2):260–270. doi: 10.1016/j.apsoil.2008.05.002 CrossRefGoogle Scholar
  48. Ferreira AS, Pires RR, Rabelo PG, Oliveira RC, Luz JMQ, Brito CH (2013) Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. Appl Soil Ecol 72:103–108. doi: 10.1016/j.apsoil.2013.05.020 CrossRefGoogle Scholar
  49. Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326(2):99–108. doi: 10.1111/j.1574-6968.2011.02407.x PubMedCrossRefGoogle Scholar
  50. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109(52):21390–21395. doi: 10.1073/pnas.1215210110 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Fließbach A, Winkler M, Lutz MP, Oberholzer HR, Mäder P (2009) Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57(4):611–623. doi: 10.1007/s00248-009-9489-9 PubMedCrossRefGoogle Scholar
  52. Fortuna AM (2012) The soil biota. Nat Educ Knowl 3(10):1Google Scholar
  53. Friman VP, Jousset A, Buckling A (2014) Rapid prey evolution can alter the structure of predator–prey communities. J Evol Biol 27(2):374–380. doi: 10.1111/jeb.12303 PubMedCrossRefGoogle Scholar
  54. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834. doi: 10.1094/MPMI.2003.16.9.827 PubMedCrossRefGoogle Scholar
  55. Garcia-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-Garcia A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence response. Microb Biotechnol 6:264–274. doi: 10.1111/1751-7915.12028 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198(2):546–556. doi: 10.1111/nph.12169 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37(2):112–129. doi: 10.1111/j.1574-6976.2012.00343.x PubMedCrossRefGoogle Scholar
  58. Griffiths BS, Hallett PD, Kuan HL, Gregory AS, Watts CW, Whitmore AP (2008) Functional resilience of soil microbial communities depends on both soil structure and microbial community composition. Biol Fertil Soil 44(5):745–754. doi: 10.1007/s00374-007-0257-z CrossRefGoogle Scholar
  59. Hahn MW, Moore ERB, Höfle MG (1999) Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Appl Environ Microbiol 65:25–35PubMedCentralPubMedGoogle Scholar
  60. Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3(5):597–605. doi: 10.1038/ismej.2008.128 PubMedCrossRefGoogle Scholar
  61. Hartmann A, Rothballer M, Hense BA, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5(131):1–4. doi: 10.3389/fpls.2014.00131 Google Scholar
  62. Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft J-U (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239. doi: 10.1038/nrmicro1600 PubMedCrossRefGoogle Scholar
  63. Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005a) Inoculation with the plant growth promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288. doi: 10.1007/s00248-004-0148-x PubMedCrossRefGoogle Scholar
  64. Herschkovitz Y, Lerner A, Okon Y, Jurkevitch E (2005b) Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environ Microbiol 11:1847–1852. doi: 10.1111/j.1462-2920.2005.00926.x CrossRefGoogle Scholar
  65. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25. doi: 10.1038/nrmicro2259 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Holt RD (2008) Theoretical perspectives on resource pulses. Ecologist 89:671–681. doi: 10.1890/07-0348.1 CrossRefGoogle Scholar
  67. Horn K, Parker IM, Malek W, Rodríguez-Echeverría S, Parker MA (2014) Disparate origins of Bradyrhizobium symbionts for invasive populations of Cytisus scoparius (Leguminosae) in North America. FEMS Microbiol Ecol 89(1):89–98. doi: 10.1111/1574-6941.12335 PubMedCrossRefGoogle Scholar
  68. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331(1–2):413–425. doi: 10.1007/s11104-009-0262-0 CrossRefGoogle Scholar
  69. Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98(1):238–244. doi: 10.1111/j.1365-2672.2004.02449.x PubMedCrossRefGoogle Scholar
  70. Jayaraman D, Gilroy S, Ane JM (2014) Staying in touch: mechanical signals in plant–microbe interactions. Curr Opin Plant Biol 20:104–109. doi: 10.1016/j.pbi.2014.05.003 PubMedCrossRefGoogle Scholar
  71. Kadouri D, Castro-Sowinski S, Jurkevitch E, Okon Y (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67. doi: 10.1080/10408410590899228 PubMedCrossRefGoogle Scholar
  72. Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595. doi: 10.1038/nclimate2580 CrossRefGoogle Scholar
  73. Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M (2013) Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol 199:203–211. doi: 10.1111/nph.12249 PubMedCrossRefGoogle Scholar
  74. Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol Biochem 38(7):1665–1672. doi: 10.1016/j.soilbio.2005.11.027 CrossRefGoogle Scholar
  75. Lange M, Habekost M, Eisenhauer N et al (2014) Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS ONE 9(5), e96182. doi: 10.1371/journal.pone.0096182 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Lemanceau P, Maron PA, Mazurier S, Mougel C, Pivato B, Plassart P, Ranjard L, Revellin C, Tardy V, Wipf D (2015) Understanding and managing soil biodiversity: a major challenge in agroecology. Agron Sustainable Dev 35(1):67–81. doi: 10.1007/s13593-014-0247-0 CrossRefGoogle Scholar
  77. Lerner A, Herschkovitz Y, Baudoin E, Nazaret S, Moënne-Loccoz Y, Okon Y, Jurkevitch E (2006) Effect of Azospirillum brasilense inoculation on rhizobacterial communities analyzed by denaturing gradient gel electrophoresis and automated ribosomal intergenic spacer analysis. Soil Biol Biochem 38(6):1212–1218. doi: 10.1016/j.soilbio.2005.10.007 CrossRefGoogle Scholar
  78. Li R, Khafipour E, Krause DO, Entz MH, de Kievit TR, Fernando WD (2012) Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS ONE 7(12), e51897. doi: 10.1371/journal.pone.0051897 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Litchman E (2010) Invisible invaders: non‐pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett 13(12):1560–1572. doi: 10.1111/j.1461-0248.2010.01544.x PubMedCrossRefGoogle Scholar
  80. Lou Y, Clay SA, Davis AS, Dille A, Felix J, Ramirez AH, Sprague CL, Yannarell AC (2014) An affinity–effect relationship for microbial communities in plant–soil feedback loops. Microb Ecol 67(4):866–876. doi: 10.1007/s00248-013-0349-2 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Lupwayi NZ, Olsen PE, Sande ES, Keyser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crop Res 65(2):259–270. doi: 10.1016/S0378-4290(99)00091-X CrossRefGoogle Scholar
  82. Madsen EL (2005) Identifying microorganisms responsible for ecologically significant biogeochemical processes. Nat Rev Microbiol 3(5):439–446. doi: 10.1038/nrmicro1151 PubMedCrossRefGoogle Scholar
  83. Mao Y, Yannarell AC, Mackie RI (2011) Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS ONE 6(9), e24750. doi: 10.1371/journal.pone.0024750 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100. doi: 10.1126/science.1203980 PubMedCrossRefGoogle Scholar
  85. Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92(5):875–885. doi: 10.1007/s00253-011-3521-y PubMedCrossRefGoogle Scholar
  86. Moënne-Loccoz Y, Mavingui P, Combes C, Normand P, Steinberg C (2015) Microorganisms and biotic interactions. In: Bertrand JC et al (eds) Environmental microbiology: fundamentals and applications. Springer, Netherlands, pp 395–444. doi: 10.1007/978-94-017-9118-2_11 Google Scholar
  87. Morrissey JP, Walsh UF, O’Donnell A, Moënne-Loccoz Y, O’Gara F (2002) Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81(1–4):599–606. doi: 10.1023/A:102052202537 PubMedCrossRefGoogle Scholar
  88. Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29(1):6–22. doi: 10.1007/s00344-009-9107-6 CrossRefGoogle Scholar
  89. Naiman AD, Latrónico A, de Salamone IEG (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45(1):44–51. doi: 10.1016/j.ejsobi.2008.11.001 CrossRefGoogle Scholar
  90. Nakagawa T, Okazaki S, Shibuya N (2014) Genes involved in pathogenesis and defense responses. In: Tabata S, Stougaard J (eds) The lotus japonicus genome, compendium of plant genomes. Springer, Berlin, pp 163–169. doi: 10.1007/978-3-662-44270-8_15 Google Scholar
  91. Ndlovu J, Richardson DM, Wilson JR, Le Roux JJ (2013) Co‐invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J Biogeogr 40:1240–1251. doi: 10.1111/jbi.12091 CrossRefGoogle Scholar
  92. Occhipinti-Ambrogi A, Galil BS (2004) A uniform terminology on bioinvasions: a chimera or an operative tool? Mar Pollut Bull 49:688–694. doi: 10.1016/j.marpolbul.2004.08.011 PubMedCrossRefGoogle Scholar
  93. Ollivier J, Töwe S, Bannert A et al (2011) Nitrogen turnover in soil and global change. FEMS Microbiol Ecol 78(1):3–16. doi: 10.1111/j.1574-6941.2011.01165.x PubMedCrossRefGoogle Scholar
  94. Pagaling E, Strathdee F, Spears BM, Cates ME, Allen RJ, Free A (2014) Community history affects the predictability of microbial ecosystem development. ISME J 8(1):19–30. doi: 10.1038/ismej.2013.150 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2014) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. doi: 10.1038/ismej.2014.196
  96. Paula FS, Rodrigues JL, Zhou J et al (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 23(12):2988–2999. doi: 10.1111/mec.12786 PubMedCrossRefGoogle Scholar
  97. Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. In: Pickett STA, White PS (eds). Academic, OrlandoGoogle Scholar
  98. Pickett STA, Kolasa J, Armesto JJ, Collins SL (1989) The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136CrossRefGoogle Scholar
  99. Pineda A, Zheng SJ, van Loon JJ, Pieterse CM, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15(9):507–514. doi: 10.1016/j.tplants.2010.05.007 PubMedCrossRefGoogle Scholar
  100. Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroong N (2011) Effect of plant growth promoting rhizobacteria (PGPB) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47(1):44–54. doi: 10.1016/j.ejsobi.2010.11.004 CrossRefGoogle Scholar
  101. Piromyou P, Noisangiam R, Uchiyama H, Tittabutr P, Boonkerd N, Teaumroong N (2013) Indigenous microbial community structure in rhizosphere of chinese kale as affected by plant growth-promoting rhizobacteria inoculation. Pedosphere 23(5):577–592. doi: 10.1016/S1002-0160(13)60051-X CrossRefGoogle Scholar
  102. Porter SS, Stanton ML, Rice KJ (2011) Mutualism and adaptive divergence: co-invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis. PLoS ONE 6(12), e27935. doi: 10.1371/journal.pone.0027935 PubMedCentralPubMedCrossRefGoogle Scholar
  103. Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53(1):131–143. doi: 10.2307/4135498 CrossRefGoogle Scholar
  104. Queck SY, Weitere M, Moreno AM, Rice SA, Kjelleberg S (2006) The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing. Environ Microbiol 8(6):1017–1025. doi: 10.1111/j.1462-2920.2006.00993.x PubMedCrossRefGoogle Scholar
  105. Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12(10):R106. doi: 10.1186/gb-2011-12-10-r106 PubMedCentralPubMedCrossRefGoogle Scholar
  106. Reis VM, Teixeira KRS, Pedraza RO (2011) What is expected from the genus Azospirillum as a plant growth-promoting bacteria? In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 123–138. doi: 10.1007/978-3-642-20332-9_6 CrossRefGoogle Scholar
  107. Revellin C, Giraud JJ, Silva N, Wadoux P, Catroux G (2001) Effect of some granular insecticides currently used for the treatment of maize crops (Zea mays) on the survival of inoculated Azospirillum lipoferum. Pest Manag Sci 57(11):1075–1080. doi: 10.1002/ps.398 PubMedCrossRefGoogle Scholar
  108. Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125. doi: 10.1146/annurev.environ.032108.105046 CrossRefGoogle Scholar
  109. Robinson CJ, Bohannan BJ, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 74(3):453–476. doi: 10.1128/MMBR.00014-10 PubMedCentralPubMedCrossRefGoogle Scholar
  110. Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556. doi: 10.1104/pp. 108.127613 PubMedCentralPubMedCrossRefGoogle Scholar
  111. Saccà A (2015) Invasive aquatic microorganisms: patterns of introduction and impacts. In: Waterman R (ed) Biological invasions. Nova Science Publishers, Inc., pp 1–37. doi: 10.13140/2.1.1639.1205
  112. Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco-and agro-biotechnological processes: theory and practice. Trends Biotechnol 32(10):529–537. doi: 10.1016/j.tibtech.2014.08.002 PubMedCrossRefGoogle Scholar
  113. Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun 3:1305. doi: 10.1038/ncomms2287 PubMedCrossRefGoogle Scholar
  114. Schenk ST, Stein E, Kogel KH, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7(2):178–181. doi: 10.4161/psb.18789 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Schmitz OJ, Hawlena D, Trussell GC (2010) Predator control of ecosystem nutrient dynamics. Ecol Lett 13:1199–1209. doi: 10.1111/j.1461-0248.2010.01511
  116. Schreiter S, Sandmann M, Smalla K, Grosch R (2014) Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS One 9(8):e103726. doi: 10.1371/journal.pone.0103726
  117. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Breusegem FV, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N‐acyl‐L‐homoserine lactone‐producing rhizosphere bacteria. Plant Cell Environ 29(5):909–918. doi: 10.1111/j.1365-3040.2005.01471.x PubMedCrossRefGoogle Scholar
  118. Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JBH, Matulich KL, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3(417):1–17. doi: 10.3389/fmicb.2012.00417 Google Scholar
  119. Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci U S A 111(25):9199–9204. doi: 10.1073/pnas.1322434111 PubMedCentralPubMedCrossRefGoogle Scholar
  120. Šimek K, Chrzanowski TH (1992) Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol 58(11):3715–3720PubMedCentralPubMedGoogle Scholar
  121. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1057. doi: 10.1104/pp.111.174581 PubMedCentralPubMedCrossRefGoogle Scholar
  122. Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603. doi: 10.1007/s11104-012-1430-1 CrossRefGoogle Scholar
  123. Staley JT (2006) The bacterial species dilemma and the genomic phylogenetic species concept. Philos Trans R Soc Lond B Biol Sci 361:1899–1909. doi: 10.1098/rstb.2006.1914 PubMedCentralPubMedCrossRefGoogle Scholar
  124. Stępkowski T, Moulin L, Krzyżańska A, McInnes A, Law IJ, Howieson J (2005) European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 71(11):7041–7052. doi: 10.1128/AEM.71.11.7041-7052.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  125. Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95(9):5145–5149.lPubMedCentralPubMedCrossRefGoogle Scholar
  126. Sun YM, Zhang NN, Wang ET, Yuan HL, Yang JS, Chen WX (2009) Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (Elymus sibiricus L.). FEMS Microbiol Ecol 70(2):218–226. doi: 10.1111/j.1574-6941.2009.00752.x CrossRefGoogle Scholar
  127. Trabelsi D, Mengoni A, Ben Ammar H, Mhamdi R (2011) Effect of on‐field inoculation of Phaseolus vulgaris with rhizobia on soil bacterial communities. FEMS Microbiol Ecol 77(1):211–222. doi: 10.1111/j.1574-6941.2011.01102.x PubMedCrossRefGoogle Scholar
  128. Tuller T, Girshovich Y, Sella Y, Kreimer A, Freilich S, Kupiec M, Gophna U, Ruppin E (2011) Association between translation efficiency and horizontal gene transfer within microbial communities. Nucleic Acids Res 39(11):4743–4755. doi: 10.1093/nar/gkr054 PubMedCentralPubMedCrossRefGoogle Scholar
  129. van Dam NM, Heil M (2011) Multitrophic interactions below and above ground: en route to the next level. J Ecol 99(1):77–88. doi: 10.1111/j.1365-2745.2010.01761.x CrossRefGoogle Scholar
  130. van der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. doi: 10.1111/j.1461-0248.2007.01139.x PubMedCrossRefGoogle Scholar
  131. van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1(1):28–37. doi: 10.1038/ismej.2007.9 PubMedCrossRefGoogle Scholar
  132. van der Woude MW (2011) Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol 14(2):205–211. doi: 10.1016/j.mib.2011.01.002 PubMedCrossRefGoogle Scholar
  133. van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109(4):1159–1164. doi: 10.1073/pnas.1109326109 PubMedCentralPubMedCrossRefGoogle Scholar
  134. Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S, Hulme PE (2009) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8(3):135–144. doi: 10.1890/080083 CrossRefGoogle Scholar
  135. Wagg C, Bender SF, Widmer F, van der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111(14):5266–5270. doi: 10.1073/pnas.1320054111 PubMedCentralPubMedCrossRefGoogle Scholar
  136. Wainwright M (1999) Pollution-effects on microorganisms and microbial activity in the environment. In: Wainwright M (ed) An introduction to environmental biotechnology. Springer, US, pp 147–168. doi: 10.1007/978-1-4615-5251-2_17 CrossRefGoogle Scholar
  137. Wan NF, Jiang JX, Li B (2014) Modeling ecological two-sidedness for complex ecosystems. Ecol Model 287:36–43. doi: 10.1016/j.ecolmodel.2014.04.011 CrossRefGoogle Scholar
  138. Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21(3):173–181. doi: 10.1007/s00572-010-0319-1 PubMedCrossRefGoogle Scholar
  139. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633. doi: 10.1126/science.1094875 PubMedCrossRefGoogle Scholar
  140. Warnecke F, Hess M (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142(1):91–95. doi: 10.1016/j.jbiotec.2009.03.022 PubMedCrossRefGoogle Scholar
  141. Weiland-Bräuer N, Pinnow N, Schmitz RA (2015) Novel reporter for identification of interference with acyl homoserine lactone and autoinducer-2 quorum sensing. Appl Environ Microbiol 81(4):1477–1489. doi: 10.1128/AEM.03290-14 PubMedCentralPubMedCrossRefGoogle Scholar
  142. Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7(10):1593–1601. doi: 10.1111/j.1462-2920.2005.00851.x PubMedCrossRefGoogle Scholar
  143. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458(2):623–626. doi: 10.1038/nature07840 PubMedCrossRefGoogle Scholar
  144. Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34(2):181–188. doi: 10.1016/S0038-0717(01)00165-1 CrossRefGoogle Scholar
  145. Xavier LJC, Germida JJ (2003) Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol Fertil Soils 37(5):261–267. doi: 10.1007/s00374-003-0605-6 Google Scholar
  146. Yi H-S, Ryu C-M, Heil M (2010) Sweet smells prepare plants for future stress—airborne induction of plant disease immunity. Plant Signal Behav 5:528–531. doi: 10.4161/psb.10984 PubMedCrossRefGoogle Scholar
  147. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26(9):1101–1108. doi: 10.1016/0038-0717(94)90131-7 CrossRefGoogle Scholar
  148. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150. doi: 10.1094/MPMI-06-11-0179 PubMedCrossRefGoogle Scholar
  149. Zarea MJ, Hajinia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146. doi: 10.1016/j.soilbio.2011.11.006 CrossRefGoogle Scholar
  150. Zhang NN, Sun YM, Li L, Wang ET, Chen WX, Yuan HL (2010) Effects of intercropping and Rhizobium inoculation on yield and rhizosphere bacterial community of faba bean (Vicia faba L.). Biol Fertil Soil 46(6):625–639. doi: 10.1007/s00374-010-0469-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Adriana Ambrosini
    • 1
  • Rocheli de Souza
    • 1
  • Luciane M. P. Passaglia
    • 1
  1. 1.Departamento de Genética, Instituto de BiociênciasUniversidade Federal do Rio Grande do Sul (UFRGS)Porto Alegre, RSBrazil

Personalised recommendations