Plant and Soil

, Volume 400, Issue 1–2, pp 231–243 | Cite as

Native and alien herbaceous plants in the Brazilian Cerrado are (co-)limited by different nutrients

  • Luciola S. LannesEmail author
  • Mercedes M. C. Bustamante
  • Peter J. Edwards
  • Harry Olde Venterink
Regular Article


Background and aims

The diverse flora of the Brazilian Cerrado is threatened by agricultural expansion, nutrient enrichment and invasion of alien plants. We performed a fertilization experiment to investigate the nature of nutrient limitation in Cerrado vegetation, and evaluate whether native and alien invasive species are limited by the same or different nutrients.


We applied various combinations of nutrients (phosphorus (P), nitrogen (N), and a mixture of other macro- and micro-nutrients (‘cations treatment’)) to six types of Cerrado vegetation. We then studied over a 3-year period how these treatments affected the aboveground biomass of native forbs, native C3 and C4 grasses, and invasive C4 grasses.


The full nutrient treatment (N + P+ ‘cations’) significantly increased total community biomass across our sites, but P alone had no effect. The nutrient treatments also affected the relative abundance of functional plant groups in the six vegetation types. P addition, either alone or in combination with other nutrients, increased the biomass of alien C4 grasses, where present, whereas the cations treatment stimulated growth of the native C4 grasses. Addition of N + P reduced the biomass of native C3 grasses.


Our results indicate co-limitation by several nutrients, including P, perhaps N, and at least one other nutrient. Further research is needed to determine what the other nutrient (or nutrients) may be. Native and invasive species appear to be limited by different nutrients, with P alone stimulating growth of African C4 grasses. This should be considered in managing both natural and invaded communities.


Invasive grasses Nutrient limitation N:P ratio Nutrients Savanna Stoichiometry 



This study was funded by the Swiss National Science Foundation (project 31003A_122563), ETH North South Centre and University of Brasilia. We thank the staff of IBGE Reserve for logistical support and Yann Hautier for helpful suggestions on a draft version of the manuscript.


  1. Abrahão A, Lambers H, Sawaya ACHF, Mazzafera P, Oliveira RS (2014) Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176:345–355CrossRefPubMedGoogle Scholar
  2. Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector H, HarpoleWS O’HLR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu C-J, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Lambers JHR, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science 333:1750–1753CrossRefPubMedGoogle Scholar
  3. Aires FS (2009) Desenvolvimento de técnica de manejo, sem uso de agentes químicos, no controle da espécies invasora Melinis minutiflora Beauv. (capim-gordura) para aplicação em áreas de campo sujo. Master’s thesis, Universidade de Brasília, BrasíliaGoogle Scholar
  4. Almeida-Neto M, Prado PI, Kubota U, Bariani JM, Aguirre GH, Lewinsohn TM (2010) Invasive grasses and native Asteraceae in the Brazilian Cerrado. Plant Ecol 209:109–122CrossRefGoogle Scholar
  5. Barger NN, D’Antonio CM, Ghneim T, Brink K, Cuevas E (2002) Nutrient limitation to primary productivity in a secondary savanna in Venezuela. Biotropica 34:493–501CrossRefGoogle Scholar
  6. Batmanian GJ, Haridasan M (1985) Primary production and accumulation of nutrients by the ground layer community of cerrado vegetation of central Brazil. Plant Soil 88:437–440CrossRefGoogle Scholar
  7. Bilbao B, Medina E (1990) Nitrogen-use efficiency for growth in a cultivated African grass and a native South American pasture grass. J Biogeogr 17:421–425CrossRefGoogle Scholar
  8. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59CrossRefPubMedGoogle Scholar
  9. Bustamante MMC, Medina E, Asner GP, Nardoto GB, Garcia-Montiel DC (2006) Nitrogen cycling in tropical and temperate savannas. Biogeochem 79:209–237CrossRefGoogle Scholar
  10. Bustamante MMC, de Britto DQ, Kozovits AR, Luedemann G, de Mello TRB, Pinto AS, Munhoz CBR, Takahashi FSC (2012) Effects of nutrient additions on plant biomass and diversity of the herbaceous-subshrub layer of a Brazilian savanna (Cerrado). Plant Ecol 213:795–808CrossRefGoogle Scholar
  11. Carmona R, Martins CR (2010) Dormência e armazenabilidade de sementes de capim-gordura. Revista Brasileira de Sementes 32(4):71–79CrossRefGoogle Scholar
  12. Cassidy TM, Fownes JH, Harrington RA (2004) Nitrogen limits an invasive perennial shrub in forest understory. Biol Inv 6:113–121CrossRefGoogle Scholar
  13. Cech PG, Kuster T, Edwards PJ, Olde VH (2008) Effects of herbivory, fire and N2-fixation on nutrient limitation in a humid African savanna. Ecosystems 11:991–1004CrossRefGoogle Scholar
  14. Ceulemans T, Stevens CJ, Duchateau L, Jacquemyn H, Gowing DJG, Merckx R, Wallace H, van Rooijen N, Goethem T, Bobbink R, Dorland E, Gaudnik C, Alard D, Corcket E, Muller S, Dise NB, Dupré C, Dieckmann M, Honnay O (2014) Soil phosphorus constrains biodiversity across European grasslands. Global Change Biology doi: 1 < 0.0010/gcb.12650Google Scholar
  15. Chapin FS, Vitousek PM, van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58CrossRefGoogle Scholar
  16. Copeland SM, Bruna EM, Barbosa Silva LV, Mack MC, Vasconcelos HL (2012) Short-term effects of elevated precipitation and nitrogen on soil fertility and plant growth in a Neotropical savanna. Ecosphere 3(4):31CrossRefGoogle Scholar
  17. Crawley MJ, Johnston AE, Silvertown J, Dodd M, Mazancourt C, Heard MS, Henman DF, Edwards GR (2005) Determinants of species richness in the Park Grass experiment. Am Nat 165(2):179–192CrossRefPubMedGoogle Scholar
  18. D’Antonio CM, Mack MC (2006) Nutrient limitation in a fire-derived, nitrogen-rich Hawaiian grassland. Biotropica 38:458–467CrossRefGoogle Scholar
  19. Daehler CC (2003) Performance comparisons of co-occurring native and invasive grasses: implications for conservation and restoration. Ann Rev Ecol Evol Syst 34:183–211CrossRefGoogle Scholar
  20. Davidson EA, Howarth RW (2007) Nutrients in synergy. Nature 449:1000–1001CrossRefPubMedGoogle Scholar
  21. de Oliveira OC, de Oliveira IP, Ferreira E, Alves BJR, Miranda CHB, Vilela L, Urquiaga S (2001) Response of degraded pastures in the Brazilian cerrado to chemical fertilisation. Pasturas Tropicales 23:14–18Google Scholar
  22. DiTomasso A, Aarssen LW (1989) Resource manipulations in natural vegetation: a review. Vegetatio 84:9–29CrossRefGoogle Scholar
  23. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142CrossRefPubMedGoogle Scholar
  24. Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu C, Cleland EE, Collins SL, Davies KF, Du G, Feng X, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schütz M, Stevens CJ, Wedin DA, Yang LH (2015) Grassland productivity limited by multiple nutrients. Nature Plants 1:1–5CrossRefGoogle Scholar
  25. Ferreira AS, de Oliveira RS, dos Santos MA, Borges EN (2008) Atividade respiratória da microbiota e conteúdo de glicose em resposta à adição de fósforo em solo de Cerrado. Revista Brasileira de Ciência do Solo 32:1891–1897CrossRefGoogle Scholar
  26. Furley PA, Ratter JA (1988) Soil resources and plant communities of the central Brazilian Cerrado and their development. J Biogeogr 15(1):97–108CrossRefGoogle Scholar
  27. Goedert WJ (1983) Management of the Cerrado soils of Brazil: a review. J Soil Sci 34:405–428CrossRefGoogle Scholar
  28. Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439CrossRefGoogle Scholar
  29. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  30. Güsewell S, Koerselman W, Verhoeven JTA (2002) Time-dependent effects of fertilization on plant biomass in floating fens. J Veg Sci 13:705–718CrossRefGoogle Scholar
  31. Haridasan M (1992) Observations on soils, foliar nutrient concentrations and floristic composition of cerrado sensu stricto and cerradao communities in Central Brazil. In: Furley PA, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman & Hall, LondonGoogle Scholar
  32. Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862CrossRefPubMedGoogle Scholar
  33. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478–491CrossRefGoogle Scholar
  34. Johnson D, Leake JR, Lee JA (1999) The effects of quantity and durations of simulated pollutant nitrogen deposition on root-surface phosphatase activities in calcareous and acid grasslands: a bioassay approach. New Phyt 141:433–442CrossRefGoogle Scholar
  35. Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Funct Ecol 21:1034–2043CrossRefGoogle Scholar
  36. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103CrossRefPubMedGoogle Scholar
  37. Lannes LS, Bustamante MMC, Edwards PJ, Olde Venterink H (2012) Alien and endangered plants in the Brazilian Cerrado exhibit contrasting relationships with vegetation biomass and N:P stoichiometry. New Phytol 196:816–823CrossRefPubMedGoogle Scholar
  38. Lilienfein J, Wilcke W, Zimmermann R, Gerstberger P, Araujo GM, Zech W (2001) Nutrient storage in soil and biomass of native Brazilian Cerrado. J Plant Nutr Soil Sci 164:487–495CrossRefGoogle Scholar
  39. Meier M (1991) Nitratbestimmung in Boden-Proben (N-min-Methode). LaborPraxis, BerlinGoogle Scholar
  40. Mendonça RC, Felfili JM, Walter BMT, Silva Júnior MC, Rezende AV, Filgueira JS, Nogueira PE (2008) Flora vascular do cerrado: um ‘checklist’ com 11.430 espécies. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado ambiente e flora, 2nd edn. Embrapa Informação Tecnológica, BrasíliaGoogle Scholar
  41. Myers N, Mittermeier RA, Mittermeier C, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  42. Nardoto GB, Bustamante MMC, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. J Trop Ecol 22:191–201CrossRefGoogle Scholar
  43. Olde Venterink H (2011) Does phosphorus limitation promote species-rich plant communities? Plant Soil 345:1–9CrossRefGoogle Scholar
  44. Olde Venterink H, van der Vliet RE, Wassen MJ (2001) Nutrient limitation along a productivity gradient in wet meadows. Plant Soil 234:171–179CrossRefGoogle Scholar
  45. Olde Venterink H, Kardel I, Kotowski W, Peeters WHM, Wassen MJ (2009) Long-term effects of drainage and hay-removal on nutrient dynamics and limitation in the Biebrza mires, Poland. Biogeochem 93:235–252CrossRefGoogle Scholar
  46. Oliveira RS, Galvão HC, de Campos MCR, Eller CB, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194CrossRefPubMedGoogle Scholar
  47. Perreijn K (2002) Symbiotic nitrogen fixation by leguminous trees in tropical rain forest in Guyana. PhD thesis, Universiteit Utrecht, UtrechtGoogle Scholar
  48. Pivello VR (2011) Invasões biológicas no Cerrado brasileiro: Efeitos da introdução de espécies exóticas sobre a biodiversidade. ECOLOGIA.INFO 33Google Scholar
  49. Pivello VR, Shida CN, Meirelles ST (1999) Alien grasses in Brazilian savannas: a threat to biodiversity. Biodivers Conserv 8:1281–1294CrossRefGoogle Scholar
  50. Ribeiro JF, Walter BMT (1998) Fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. Embrapa CPAC, PlanaltinaGoogle Scholar
  51. Sarmiento G, Goldstein G, Meinzer F (1985) Adaptive strategies of woody species in neotropical savannas. Biol Rev 60:315–355CrossRefGoogle Scholar
  52. Sarmiento G, da Silva MP, Naranjo ME, Pinillos M (2006) Nitrogen and phosphorus as limiting factors for growth and primary production in a flooded savanna in the Venezuelan Llanos. J Trop Ecol 22:203–212CrossRefGoogle Scholar
  53. Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2014) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308–1326CrossRefGoogle Scholar
  54. Siemann E, Rogers WE (2007) The role of soil resources in an exotic tree invasion in Texas coastal prairie. J Ecol 95:689–697CrossRefGoogle Scholar
  55. Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci U S A 102:4387–4392PubMedCentralCrossRefPubMedGoogle Scholar
  56. Tejos R (1984) Efecto del potasio y azufre sobre el pastizal nativo de una sabana. I. Producción. Zootec Trop 2:74–89Google Scholar
  57. Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM (2004) Expansion of invasive species on ombrotrophic bogs: dessication or high N deposition? J Appl Ecol 41:139–150CrossRefGoogle Scholar
  58. Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JWC (2011) Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9(1):9–17CrossRefGoogle Scholar
  59. van de Riet BP, Barendregt A, Brouns K, Hefting MM, Verhoeven JTA (2010) Nutrient limitation in species-rich Calthion grasslands in relation to opportunities for restoration in a peat meadow landscape. Appl Veg Sci 13:315–325Google Scholar
  60. van Duren IC, Petgel DM (2000) Nutrient limitations in wet, drained and rewetted fen meadows: evaluation of methods and results. Plant Soil 220:35–47CrossRefGoogle Scholar
  61. Villela DM, Haridasan M (1994) Response of the ground layer community of a cerrado vegetation in central Brazil to liming and irrigation. Plant Soil 163:25–31Google Scholar
  62. Zhang ZJ, Wang ZD, Holden J, Xu XH, Wang H, Ruan JH, Xu H (2012) The release of phosphorus from sediment into water in subtropical wetlands: a warming microcosm experiment. Hydrol Process 26(1):15–26CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luciola S. Lannes
    • 1
    • 3
    Email author
  • Mercedes M. C. Bustamante
    • 2
  • Peter J. Edwards
    • 1
  • Harry Olde Venterink
    • 1
    • 4
  1. 1.Institute of Integrative Biology, ETH ZürichZürichSwitzerland
  2. 2.Departamento de EcologiaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Departamento de Biologia e ZootecniaUNESP – Univ Estadual PaulistaIlha SolteiraBrazil
  4. 4.Plant Biology and Nature ManagementVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations