Skip to main content
Log in

No effects of Epichloë endophyte infection on nitrogen cycling in meadow fescue (Schedonorus pratensis) grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Systemic Epichloë endophytes produce alkaloids that protect their grass hosts against pathogens and herbivores. These alkaloids, together with other endophyte induced changes in litter quality, may decelerate the decomposition of infected grass litter, but so far no study has tested whether the effects on decomposition rate translate into changes in N cycling in infected grasslands. Here we test if the Epichloë uncinata infection of meadow fescue, Schedonorus pratensis decelerates litter decomposition and N release, increases soil C and N accumulation and lowers the availability of mineral N in the soil under infected grass.

Methods

To analyze grass litter and soil attributes, samples were collected from endophyte infected (E+) and non-infected (E-) field plots, established seven years earlier. At the time of the study, the frequency of E+ plants was 80–90 % and 0–3 % in the E+ and E- plots, respectively. Litter decomposition rate and litter N release were examined using litter mesh bags, placed on field ground. Soil mineral N availability was estimated using ion exchange resin bags that were buried in the soil.

Results

Epichloë uncinata infection did not affect meadow fescue litter N%, litter mass loss or litter N release. Neither did soil C and N content and resin NH4 and NO3 contents differ between the E+ and E- grass plots. E+ litter did not decompose faster in E+ than E- plots, i.e. no home-field advantage was observed.

Conclusions

We did not find evidence that Epichloë uncinata infection would decelerate N cycling and reduce N mineralization in meadow fescue grasslands. This suggests that the infection may not decrease the benefit of the endophyte-grass symbiosis by reducing soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems. New Phytol 201:307–314

    Article  Google Scholar 

  • Berg B (2014) Decomposition patterns for foliar litter - a theory for influencing factors. Soil Biol Biochem 78:222–232

    Article  CAS  Google Scholar 

  • Cheplick GP, Faeth S (2009) Ecology and evolution of the grass endophyte symbiosis. Oxford University Press, New York

    Book  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  CAS  PubMed  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Conover MR (1998) Impact of consuming tall fescue leaves with the endophytic fungus, Acremonium coenophialum, on meadow voles. J Mammal 79:457–463

    Article  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19:988--995

  • Crutsinger GM, Sanders NJ, Classen AT (2009) Comparing intra-and inter-specific effects on litter decomposition in an old-field ecosystem. Basic Appl Ecol 10:535–543

    Article  Google Scholar 

  • Eichenseer H, Dahlman DL, Bush LP (1991) Influence of endophyte infection, plant age and harvest interval on Rhopalosiphum padi survival and its relation to quantity of N-formyl and N-acetyl loline in tall fescue. Entomol Exp Appl 60:29–38

    Article  CAS  Google Scholar 

  • Findlay S, Carreiro M, Krischik V, Jones CG (1996) Effects of damage to living plants on leaf litter quality. Ecol Appl 6:269–275

    Article  Google Scholar 

  • Franzluebbers AJ, Nazih N, Stuedemann JA, Fuhrmann JJ, Schomberg HH, Hartel PG (1999) Soil carbon and nitrogen pools under low- and high-endophyte-infected tall fescue. Soil Sci Soc Am J 63:1687–1694

    Article  CAS  Google Scholar 

  • Hämet-Ahti L, Suominen J, Ulvinen T, Uotila P (eds) (1998) Retkeilykasvio (field flora of Finland). Finnish Museum of Natural History, Botanical Museum, Helsinki

    Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  CAS  PubMed  Google Scholar 

  • Huitu O, Forbes KM, Helander M, Julkunen-Tiitto R, Lambin X, Saikkonen K, Stuart P, Sulkama S, Hartley S (2014) Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Front Plant Sci 5:478. doi:10.3389/fpls.2014.00478

    Article  PubMed  PubMed Central  Google Scholar 

  • Huitu O, Helander M, Lehtonen P, Saikkonen K (2008) Consumption of grass endophytes alters the ultraviolet spectrum of vole urine. Oecologia 156:333–340

    Article  PubMed  Google Scholar 

  • Kallenbach RL, Bishop-Hurley GJ, Massie MD, Rottinghaus GE, West CP (2003) Herbage mass, nutritive value, and ergovaline concentration of stockpiled tall fescue. Crop Sci 43:1001–1005

    Article  CAS  Google Scholar 

  • Lehtonen P, Helander M, Wink M, Sporer F, Saikkonen K (2005) Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecol Lett 8:1256–1263

    Article  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  PubMed  Google Scholar 

  • Leuchtmann A, Bacon CW, Schardl CL, White Jr JF, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–215

    Article  CAS  PubMed  Google Scholar 

  • Lyons PC, Evans JJ, Bacon CW (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol 92:726–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madritch M, Donaldson JR, Lindroth RL (2006) Genetic identity of Populus tremuloides litter influences decomposition and nutrient release in a mixed forest stand. Ecosystems 9:528–537

    Article  CAS  Google Scholar 

  • Madritch MD, Lindroth RL (2011) Soil microbial communities adapt to genetic variation in leaf litter inputs. Oikos 120:1696–1704

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  CAS  PubMed  Google Scholar 

  • Nykänen H, Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104:247–268

    Article  Google Scholar 

  • Omacini M, Chaneton E, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104:581–590

    Article  Google Scholar 

  • Omacini M, Semmartin M, Pérez LI, Gundel PE (2012) Grass–endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M (2013a) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte–grass literature. Trends Plant Sci 11:428–433

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Mikola J, Helander M (2015) Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Curr Sci 109:121–126

    Google Scholar 

  • Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013b) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5

    Article  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Young CA, Faulkner JR, Florea S, Pan J (2011) Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol 5:331–344

    Article  Google Scholar 

  • Schweitzer JA, Bailey JK, Hart SC, Wimp GM, Chapman SK, Whitham TG (2005) The interaction of plant genotype and herbivory decelerate leaf litter decomposition and alter nutrient dynamics. Oikos 110:133–145

    Article  CAS  Google Scholar 

  • Siegrist JA, McCulley RL, Bush LP, Phillips TD (2010) Alkaloids may not be responsible for endophyte-associated reductions in tall fescue decomposition rates. Funct Ecol 24:460–468

    Article  Google Scholar 

  • Silfver T, Mikola J, Rousi M, Roininen H, Oksanen E (2007) Leaf litter decomposition differs among genotypes in a local Betula pendula population. Oecologia 152:707–714

    Article  PubMed  Google Scholar 

  • Silfver T, Paaso U, Rasehorn M, Rousi M, Mikola J (2015) Genotype × herbivore effect on leaf litter decomposition in Betula pendula saplings: ecological and evolutionary consequences and the role of secondary metabolites. PLoS One 10:e0116806

    Article  PubMed  PubMed Central  Google Scholar 

  • TePaske MR, Powell RG, Clement SL (1993) Analyses of selected endophyte-infected grasses for the presence of loline-type and ergot-type alkaloids. J Agric Food Chem 41:2299–2303

    Article  CAS  Google Scholar 

  • Vázquez-de-Aldana BR, García-Ciudad A, García-Criado B, Vicente-Tavera S, Zabalgogeazcoa I (2013) Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. PLoS One 8:e84539

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736

    Article  CAS  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton, U.S.A.

    Google Scholar 

  • Wardle DA, Zackrisson O, Hörnberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299

    Article  CAS  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hillamari Lehikoinen, Serdar Dirihan and Tuija Koivisto for assisting with litter and resin bags, Merja Myllys for measuring soil temperatures and Viivi Toivio, Santeri Savolainen and Marianne Lehtonen for processing and analyzing the resin and litter samples. The study was supported by the Academy of Finland (grants no. 137909 and 281354) to Kari Saikkonen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Mikola.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikola, J., Helander, M. & Saikkonen, K. No effects of Epichloë endophyte infection on nitrogen cycling in meadow fescue (Schedonorus pratensis) grassland. Plant Soil 405, 257–264 (2016). https://doi.org/10.1007/s11104-015-2711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2711-2

Keywords

Navigation