Advertisement

Plant and Soil

, Volume 399, Issue 1–2, pp 147–157 | Cite as

Effects of soil water availability on foliar water uptake of Araucaria angustifolia

  • Francine F. Cassana
  • Cleiton B. Eller
  • Rafael S. Oliveira
  • Lúcia R. DillenburgEmail author
Regular Article

Abstract

Background and aims

Foliar water uptake has been reported for different species, including conifers living in drought-prone environments. We conducted three experiments to determine whether leaves might absorb mist water and how this affects the water relations of well-watered and water-stressed young plants of Araucaria angustifolia.

Methods

Three independent experiments were conducted using well-watered and water-stressed plants: immersion of shoot in water for the quantification of water uptake, the short-term exposure of plants to deuterium-enriched artificial mist, followed by the evaluation of plant water status and δ2H of xylem and soil water, and the use of the heat ratio method to measure the sap flow in saplings submitted to artificial mist.

Results

Foliar water uptake was demonstrated in both groups of plants, but only water-stressed plants showed a significant improvement of shoot water status. Isotope analyses indicated release of mist water in water-stressed plants rhizosphere’s, and measurements of sap flow pointed to flow reversals in saplings exposed to mist, after a soil drought period.

Conclusions

The results confirm the capacity of A. angustifolia for absorbing water deposited in its leaves and demonstrate that leaf-absorbed water can be transported through the xylem to the soil close to the roots and improve plant water status.

Keywords

Brazilian pine Drought Isotopic analyses Reverse sap flow Water relations Hydraulic redistribution 

Notes

Acknowledgments

We thank Grazielle Sales Teodoro for reviewing this manuscript. This work was partially supported by the São Paulo Research Foundation (FAPESP) (Grant no. 10/17204-0), FAPESP/Microsoft Research (Grant no. 11/52072-0), both awarded to R.S.O., the National Council for Scientific and Technological Development (CNPq/Brazil) (research fellowship awarded to L.R.D. and R.S.O), and the Higher Education Co-ordination Agency (CAPES/Brazil) (scholarships awarded to F.F.C. and C.B.E.). This study is part of the Doctoral Thesis of F.F.C. was conducted at the Post-graduate School in Botany of the Federal University of Rio Grande do Sul (UFRGS/Brazil).

References

  1. Bauerle TL, Richard JH, Smart DR, Eissenstat DM (2008) Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant Cell Environ 31:177–186. doi: 10.1111/j.1365-3040.2007.01749.x PubMedGoogle Scholar
  2. Berry ZC, Smith WK (2014) Experimental cloud immersion and foliar water uptake in saplings of Abies fraseri and Picea rubens. Trees 28:115–123. doi: 10.1007/s00468-013-0934-5 CrossRefGoogle Scholar
  3. Berry ZC, White JC, Smith WK (2014) Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest. Tree Physiol 34:459–470. doi: 10.1093/treephys/tpu032 CrossRefPubMedGoogle Scholar
  4. Boucher J-F, Munson AD, Bernier PY (1995) Foliar absorption of dew influences shoot water potential and root growth in Pinus strobus seedlings. Tree Physiol 15:819–823. doi: 10.1093/treephys/15.12.819 CrossRefGoogle Scholar
  5. Breshears DD, Mcdowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown KM (2008) Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89:41–47. doi: 10.1890/07-0437.1 CrossRefPubMedGoogle Scholar
  6. Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27:1023–1034. doi: 10.1111/j.1365-3040.2004.01207.x CrossRefGoogle Scholar
  7. Burgess SSO, Adams MA, Turner NC, Ong CK, Khan AAH, Beverly CR, Bleby TM (2001) An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol 21:589–598. doi: 10.1093/treephys/21.9.589 CrossRefPubMedGoogle Scholar
  8. Burkhardt J, Basi S, Pariyar S, Hunsche M (2012) Stomatal penetration by aqueous solutions – an update involving leaf surface particles. New Phytol 196:774–787. doi: 10.1111/j.1469-8137.2012.04307.x CrossRefPubMedGoogle Scholar
  9. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161CrossRefGoogle Scholar
  10. Carvalho PER (1994) Espécies florestais brasileiras. Recomendações silviculturais, potencialidades e uso da madeira. Embrapa/CNPF, Brasília.Google Scholar
  11. Cassana FF, Dillenburg LR (2013) The periodic wetting of leaves enhances water relations and growth of the long-lived conifer Araucaria angustifolia. Plant Biol 15:75–83. doi: 10.1111/j.1438-8677.2012.00600.x CrossRefPubMedGoogle Scholar
  12. Corbin JD, Thomsen MA, Dawson TE, D’Antonio CM (2005) Summer water use by California coastal prairie grasses: fog, drought, and community composition. Oecologia 145:511–521. doi: 10.1007/s00442-005-0152-y CrossRefPubMedGoogle Scholar
  13. Dawson TE, Ehleringer JR (1991) Streamside trees that do not use stream water. Nature 350:335–337. doi: 10.1038/350335a0 CrossRefGoogle Scholar
  14. Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476–485. doi: 10.1007/s004420050683 CrossRefGoogle Scholar
  15. Dillenburg LR, Franco AMS, Coutinho AL, Korndörfer CL, Clebsch CC, Duarte LDS, Ferla L, Rosa LMG, Silva LGR, Garbin ML, Mósena M, Zandavalli RB, Yamasaki S (2009) Aspectos ecofisiológicos da regeneração e crescimento de Araucaria angustifolia. In: Backes A, Dutra T, Fonseca CR, Ganade G, Leal-Zanchet A (eds) Floresta de Araucária: Ecologia. Conservação e Desenvolvimento Sustentável. Holos, Ribeirão Preto, pp. 57–65Google Scholar
  16. Duarte LS, Dillenburg LR (2000) Ecophysiological responses of Araucaria angustifolia (Araucariaceae) seedlings to different irradiance levels. Aust J Bot 48:531–537. doi: 10.1071/BT98046 CrossRefGoogle Scholar
  17. Duarte LS, Dillenburg LR, Rosa LMG (2002) Assessing the role of light in the regeneration of Araucaria angustifolia (Araucariaceae). Aust J Bot 50:741–751. doi: 10.1071/BT02027 CrossRefGoogle Scholar
  18. Duarte LS, dos Santos MMG, Hartz SM, Pillar VD (2006) Role of nurse plants on Araucaria forest expansion over grassland in south Brazil. Austral Ecol 31:520–528. doi: 10.1111/j.1442-9993.2006.01602.x CrossRefGoogle Scholar
  19. Domec JC, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Villalobos-Vega R (2006) Diurnal and seasonal changes in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant Cell Environ 29:26–35. doi: 10.1111/j.1365-3040.2005.01397.x CrossRefPubMedGoogle Scholar
  20. Domec JC, Warren JM, Meinzer FC (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16. doi: 10.1007/s00442-004-1621-4 CrossRefPubMedGoogle Scholar
  21. Donovan LA, Richards JH, Linton MJ (2003) Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials. Ecology 84:463–470CrossRefGoogle Scholar
  22. Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082. doi: 10.1111/j.1365-3040.1992.tb01657.x CrossRefGoogle Scholar
  23. Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199(1):151–162. doi: 10.1111/nph.12248 CrossRefPubMedGoogle Scholar
  24. Eller CB, Burgess SSO, Oliveira RS (2015) Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree Physiol 35:387–399. doi: 10.1093/treephys/tpv001 CrossRefPubMedGoogle Scholar
  25. Espigares T, López-Pintor A, Benayas JMR (2004) Is the interaction between Retama sphaerocarpa and its understory herbaceous vegetation always reciprocally positive? Competition-facilitation shift during Retama establishment. Acta Oecol 26:121–128. doi: 10.1016/j.actao.2004.03.009 CrossRefGoogle Scholar
  26. Ferreira AG, Handro W (1979) Aspects of seed germination in Araucaria angustifolia (Bert.) O. Ktze. Rev Bras Bot 2:7–13Google Scholar
  27. Garbin ML, Dillenburg LR (2008) Effects of different nitrogen sources on growth, chlorophyll concentration, nitrate reductase activity and carbon and nitrogen distribution in Araucaria angustifolia. Braz J Plant Physiol 20:43–51. doi: 10.1590/S1677-04202008000400005 CrossRefGoogle Scholar
  28. Goldsmith GR (2013) Changing directions: the atmosphere–plant–soil continuum. New Phytol 199:4–6CrossRefPubMedGoogle Scholar
  29. Goldsmith GR, Matzke NJ, Dawson TE (2013) The incidence and implications of clouds for cloud forest plant water relations. Ecol Lett 16:307–314CrossRefPubMedGoogle Scholar
  30. Ingraham NL, Matthews RA (1995) The importance of fog-drip water to vegetation: point Reyes Peninsula, California. J Hydrol 164:269–285. doi: 10.1016/0022-1694(94)02538-M CrossRefGoogle Scholar
  31. Inoue MT, Galvão F, Torres DV (1978) A produção primária de Araucaria angustifolia (Bert.) O. Ktze. no estágio de muda em dependência da intensidade luminosa. Silvic 4:54–56Google Scholar
  32. Katz C, Oren R, Schulze E-D, Milburn JA (1989) Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees 3:33–37. doi: 10.1007/BF00202398 CrossRefGoogle Scholar
  33. Korndörfer CL, Mósena M, Dillenburg LR (2008) Initial growth of Brazilian pine (Araucaria angustifolia) under equal soil volumes but contrasting rooting depths. Trees 22:835–841. doi: 10.1007/s00468-008-0244-5 CrossRefGoogle Scholar
  34. Laur J, Hacke UG (2014) Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol 203:388–400. doi: 10.1111/nph.12806 CrossRefPubMedGoogle Scholar
  35. Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161:449–459. doi: 10.1007/s00442-009-1400-3 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mastroberti A, Mariath JEA (2003) Leaf anatomy of Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae). Rev Bras Bot 26:343–353. doi: 10.1590/S0100-84042003000300007 CrossRefGoogle Scholar
  37. Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Dämon B, Hacke UG (2014) Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol 164:1731–1740. doi: 10.1104/pp.114.236646 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mósena M, Dillenburg LR (2004) Early growth of Brazilian pine (Araucaria angustifolia [Bertol.] Kuntze) in response to soil compaction and drought. Plant Soil 258:293–306. doi: 10.1023/B:PLSO.0000016559.47135.21 CrossRefGoogle Scholar
  39. Nadezhdina N. David TS, David JS, Ferreira MI, Dohnal M, Tesar M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J, Jimenez MS, Morales D (2010) Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3: 431–444. doi: 10.1002/eco.148 CrossRefGoogle Scholar
  40. Narvaes IS, Brena DA, Longhi SJ (2005) Estrutura da regeneração natural em floresta ombrófila mista na Floresta Nacional de São Francisco de Paula, RS. Ci Fl 15:331–342Google Scholar
  41. Oliveira RS, Eller CB, Bittencourt P, Mulligan M (2014a) The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann Bot 113:909–920CrossRefPubMedPubMedCentralGoogle Scholar
  42. Oliveira RS, Christoffersen BO, Barros FV, Teodoro GS, Bittencourt P, Brum-Jr MM, Viani RAG (2014b) Changing precipitation regimes and the water and carbon economies of trees. Theor Exp Plant Physiol 26(1): 65–82.CrossRefGoogle Scholar
  43. Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363. doi: 10.1007/s00442-005-0108-2 CrossRefPubMedGoogle Scholar
  44. Reitz R, Klein RM, Reis A (1988) Projeto Madeira do Rio Grande do Sul. SUDESUL/Herbário Barbosa Rodrigues, Porto AlegreGoogle Scholar
  45. Rigg LS, Enright NJ, Perry GLW, Miller BP (2002) The role of cloud combing and shading by isolated trees in the succession from maquis to rain forest in New Caledonia. Biotropica 34:199–210. doi: 10.1111/j.1744-7429.2002.tb00531.x CrossRefGoogle Scholar
  46. Rosado BHP, Oliveira RS, Aidar MPM (2010) Is leaf water repellency related to vapor pressure deficit and crown exposure in tropical Forests? Acta Oecol 36:645–649. doi: 10.1016/j.actao.2010.10.001 CrossRefGoogle Scholar
  47. Scholander PF, Hammel HT, Hemingsen EA, Bradstreet ED (1965) Hydrostatic pressure and osmotic potentials in leaves of mangroves and some other plants. Proc Natl Acad Sci U S A 51:119–125Google Scholar
  48. Schönherr J, Fernandez V, Schreiber L (2005) Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature and type of chelate. J Agric Food Chem 53:4484–4492. doi: 10.1021/jf050453t CrossRefPubMedGoogle Scholar
  49. Schreiber L, Skrabs M, Hartmann KD, Diamantopoulos P, Simanova E, Santrucek J (2001) Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta 214:274–282. doi: 10.1007/s004250100615 CrossRefPubMedGoogle Scholar
  50. Simonin KA, Santiago LS, Dawson TE (2009) Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant Cell Environ 32:882–892. doi: 10.1111/j.1365-3040.2009.01967.x CrossRefPubMedGoogle Scholar
  51. Stark JM (2000) Nutrient transformations. In: Sala O, Jackson R, Mooney HA (eds) Methods in ecosystem science. Academic, San Diego, pp. 215–234CrossRefGoogle Scholar
  52. Stone EC, Fowells HA (1955) Survival value of dew under laboratory condition with Pinus ponderosa. For Sci 1:183–188Google Scholar
  53. Vaadia Y, Waisel Y (1963) Water absorption by aerial organs of plants. Physiol Plant 16:44–51. doi: 10.1111/j.1399-3054.1963.tb08287.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francine F. Cassana
    • 1
  • Cleiton B. Eller
    • 2
  • Rafael S. Oliveira
    • 2
  • Lúcia R. Dillenburg
    • 3
    Email author
  1. 1.Sul-rio-grandense Federal Institute for EducationScience and TechnologyPelotasBrazil
  2. 2.Department of Plant Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
  3. 3.Department of Botany, Institute of BiosciencesFederal University of Rio Grande do Sul SulPorto AlegreBrazil

Personalised recommendations