Advertisement

Plant and Soil

, Volume 399, Issue 1–2, pp 193–208 | Cite as

Mapping QTL associated with remobilization of zinc from vegetative tissues into grains of barley (Hordeum vulgare)

  • Shahid Hussain
  • Zed RengelEmail author
  • Seyed A. Mohammadi
  • Asghar Ebadi-Segherloo
  • Muhammad A. Maqsood
Regular Article

Abstract

Background and aims

Limited remobilization of Zn from vegetative tissues into grains via phloem is a major physiological barrier against Zn loading into cereal grains. In present experiment, doubled-haploid mapping population (150 lines, derived from Clipper ×Sahara) of barley was genetically characterized for differential Zn remobilization.

Methods

The germplasm was grown under glasshouse conditions. Leaves (upper three), stem (the rest of the plant) and mature grains were sampled from the main-tillers at anthesis and maturity for Zn analysis. Quantitative trait loci (QTL) regulating time to anthesis, plant biomass, Zn concentration in vegetative tissues and remobilization of Zn from these tissues into grains were identified using a genetic linkage map of 485 markers.

Results

A significant variation existed in grain Zn concentration among the lines (27–75 μg Zn g−1), and it correlated with the amount of Zn remobilized from vegetative tissues into grains. Sahara remobilized 37 % of pre-anthesis Zn reserves into grains; the presence of its alleles at all QTL associated with leaf (3 QTL) and stem (2 QTL) Zn remobilization increased the trait score.

Conclusions

Present study provided an insight into the genetic basis of Zn remobilization from vegetative tissues into barley grains. Such information is useful in breeding for Zn biofortification.

Keywords

Barley Biofortification Clipper × Sahara Quantitative trait loci Zinc remobilization 

Notes

Acknowledgments

The research project was financially supported by Higher Education Commission of Pakistan, International Plant Nutrition Institute (USA) and Australian Research Council. We are also thankful to Messrs. Michael Smirk and Paul Damon, School of Earth and Environment, The University of Western Australia, for their help with preparation of plant samples and Zn analysis.

Conflict of interest

Authors declare no conflict of interest.

References

  1. Agarwal S, Tripura Venkata VGN, Kotla A, et al. (2014) Expression patterns of QTL based and other candidate genes in madhukar × swarna RILs with contrasting levels of iron and zinc in unpolished rice grains. Gene 546:430–436. doi: 10.1016/j.gene.2014.05.069 CrossRefPubMedGoogle Scholar
  2. Alloway B (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548. doi: 10.1007/s10653-009-9255-4 CrossRefPubMedGoogle Scholar
  3. Bouis HE, Hotz C, McClafferty B, et al. (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40CrossRefPubMedGoogle Scholar
  4. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17. doi: 10.1007/s11104-007-9466-3 CrossRefGoogle Scholar
  5. Cakmak I, Kalayci M, Kaya Y, et al. (2010) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102. doi: 10.1021/jf101197h CrossRefPubMedGoogle Scholar
  6. Cantu D, Pearce SP, Distelfeld A, et al. (2011) Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics 12:492. doi: 10.1186/1471-2164-12-492 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caulfield LE, Black RE (2004) Zinc deficiency. In: Majid Ezzati, Alan D. Lopez AR, Murray and CJL (eds) Comp. Quantif. Heal. Risks Glob. Reg. Burd. Dis. Attrib. to Sel. Major Risk Factors, Vol. 1. World Health Organization, Geneva pp 257–279Google Scholar
  8. Chibbar RN, Dass S (2012) Crop improvement for enhanced grain quality and utilization. Qual Assur Saf Crop Foods 4:116–118. doi: 10.1111/j.1757-837X.2012.00134.x CrossRefGoogle Scholar
  9. Christiansen MW, Gregersen PL (2014) Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves. J Exp Bot 65:4009–4022. doi: 10.1093/jxb/eru046 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Christiansen MW, Holm PB, Gregersen PL (2011) Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both Monocots and dicots. BMC Res Notes 4:302. doi: 10.1186/1756-0500-4-302 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Curie C, Cassin G, Couch D, et al. (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11. doi: 10.1093/aob/mcn207 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65:3783–3798. doi: 10.1093/jxb/ert477 CrossRefPubMedGoogle Scholar
  13. Ebadi-Segherloo A (2013) Construction of barley doubled haploid population microsatellite linkage map and identification of genetic regions associated with agronomic traits and some micronutrients accumulation. University of Tabriz, DissertationGoogle Scholar
  14. Erenoglu EB, Kutman UB, Ceylan Y, et al. (2011) Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189:438–448. doi: 10.1111/j.1469-8137.2010.03488.x CrossRefPubMedGoogle Scholar
  15. Fan M-S, Zhao F-J, Fairweather-Tait SJ, et al. (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol 22:315–324. doi: 10.1016/j.jtemb.2008.07.002 CrossRefPubMedGoogle Scholar
  16. Frérot H, Faucon MP, Willems G, et al. (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL × environment interactions. New Phytol 187:355–367. doi: 10.1111/j.1469-8137.2010.03295.x CrossRefPubMedGoogle Scholar
  17. Guttieri MJ, Stein RJ, Waters BM (2013) Nutrient partitioning and grain yield of TaNAM-RNAi wheat under abiotic stress. Plant Soil 371:573–591. doi: 10.1007/s11104-013-1713-1 CrossRefGoogle Scholar
  18. Haslett B, Reid R, Rengel Z (2001) Zinc mobility in wheat : uptake and distribution of zinc applied to leaves or roots. Ann Bot 87:379–386. doi: 10.1006/anbo.2000.1349 CrossRefGoogle Scholar
  19. Hori K, Kobayashi T, Shimizu A, et al. (2003) Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet 107:806–813. doi: 10.1007/s00122-003-1342-9 CrossRefPubMedGoogle Scholar
  20. Hotz C (2009) The potential to improve zinc status through biofortification of staple food crops with zinc. Food Nutr Bull 30:S172–S178CrossRefPubMedGoogle Scholar
  21. Hussain S, Maqsood MA, Rengel Z, Aziz T (2012a) Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil 361:279–290. doi: 10.1007/s11104-012-1217-4 CrossRefGoogle Scholar
  22. Hussain S, Maqsood MA, Rengel Z, Khan MK (2012b) Mineral bioavailability in grains of pakistani bread wheat declines from old to current cultivars. Euphytica 186:153–163. doi: 10.1007/s10681-011-0511-1 CrossRefGoogle Scholar
  23. Hussain S, Maqsood MA, Aziz T, Basra SMA (2013) Zinc bioavailability response curvature in wheat grains under incremental zinc applications. Arch Agron Soil Sci 59:1001–1016. doi: 10.1080/03650340.2012.701732 CrossRefGoogle Scholar
  24. Islam A, Shepherd K (1981) Production of disomic wheat-barley chromosome addition lines using Hordeum bulbosum crosses. Genet Res 37:215–219CrossRefGoogle Scholar
  25. Joshi AK, Crossa J, Arun B, et al. (2010) Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern gangetic plains of India. F Crop Res 116:268–277. doi: 10.1016/j.fcr.2010.01.004 CrossRefGoogle Scholar
  26. Karakousis A, Barr AR, Kretschmer JM, et al. (2003) Mapping and QTL analysis of the barley population clipper × sahara. Aust J Agric Res 54:1137–1140CrossRefGoogle Scholar
  27. Kutman UB, Kutman BY, Ceylan Y, et al. (2012) Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant Soil 361:177–187. doi: 10.1007/s11104-012-1300-x CrossRefGoogle Scholar
  28. Lee S, Kim Y-S, Jeon U, et al. (2012) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells 33:269–275. doi: 10.1007/s10059-012-2231-3 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lerceteau-Köhler E, Moing A, Guérin G, et al. (2012) Genetic dissection of fruit quality traits in the octoploid cultivated strawberry highlights the role of homoeo-QTL in their control. Theor Appl Genet 124:1059–1077. doi: 10.1007/s00122-011-1769-3 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lonergan PF, Pallotta MA, Lorimer M, et al. (2009) Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol 184:168–179. doi: 10.1111/j.1469-8137.2009.02956.x CrossRefPubMedGoogle Scholar
  31. McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72–84. doi: 10.1007/s12284-008-9004-9 CrossRefGoogle Scholar
  32. Meenakshi JV, Johnson NL, Manyong VM, et al. (2007) How cost-effective is biofortification in combating micronutrient malnutrition? An ex-ante assessment. World Dev 38:64–75. doi: 10.1016/j.worlddev.2009.03.014 CrossRefGoogle Scholar
  33. Olsen LI, Palmgren MG (2014) Many rivers to cross: the journey of zinc from soil to seed. Front Plant Sci 5:30. doi: 10.3389/fpls.2014.00030 PubMedPubMedCentralGoogle Scholar
  34. Pearson J, Rengel Z (1994) Distribution and remobilization of Zn and Mn during grain development in wheat. J Exp Bot 45:1829–1835CrossRefGoogle Scholar
  35. Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res 60:27–40. doi: 10.1016/S0378-4290(98)00131-2 CrossRefGoogle Scholar
  36. Ricachenevsky FK, Menguer PK, Sperotto RA (2013) KNACking on heaven’s door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds? Front Plant Sci 4:226. doi: 10.3389/fpls.2013.00226 PubMedPubMedCentralGoogle Scholar
  37. Sadeghzadeh B (2008) Mapping of chromosome regions associated with seed zinc accumulation in barley. The University of Western Australia, DissertationGoogle Scholar
  38. Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927. doi: 10.4067/S0718-95162013005000072 Google Scholar
  39. Sadeghzadeh B, Rengel Z, Li C, Yang H (2010) Molecular marker linked to a chromosome region regulating seed Zn accumulation in barley. Mol Breed 25:167–177. doi: 10.1007/s11032-009-9317-4 CrossRefGoogle Scholar
  40. Saltzman A, Birol E, Bouis HE, et al. (2013) Biofortification: progress toward a more nourishing future. Glob Food Sec 2:9–17. doi: 10.1016/j.gfs.2012.12.003 CrossRefGoogle Scholar
  41. Scheaffer RL, Young LJ (2010) Introduction to probability and its applications, 3rd edn. Brooks/Cole, Cengage Learning, Boston, MAGoogle Scholar
  42. Shahzad Z, Rouached H, Rakha A (2014) Combating mineral malnutrition through iron and zinc biofortification of cereals. Compr Rev Food Sci Food Saf 13:329–346. doi: 10.1111/1541-4337.12063 CrossRefGoogle Scholar
  43. Simić D, Mladenović Drinić S, Zdunić Z, et al. (2011) Quantitative trait loci for biofortification traits in maize grain. J Hered 103:47–54. doi: 10.1093/jhered/esr122 PubMedGoogle Scholar
  44. Sparks DL, Page AL, Helmke PA, et al. (1996) Methods of Soil Analysis. In: Part 3-Chemical Methods. Soil Science Society of America. Madison, USAGoogle Scholar
  45. Srinivasa J, Arun B, Mishra VK, et al. (2014) Zinc and iron concentration QTL mapped in a triticum spelta × T. aestivum cross. Theory Unders Angew Genet 127:1643–1651. doi: 10.1007/s00122-014-2327-6 CrossRefGoogle Scholar
  46. Tanno K, Taketa S, Takeda K, Komatsuda T (2002) A DNA marker closely linked to the vrs1 locus (row-type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theor Appl Genet 104:54–60. doi: 10.1007/s001220200006 CrossRefPubMedGoogle Scholar
  47. Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot 60:1333–1347. doi: 10.1093/jxb/erp023 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tiwari VK, Rawat N, Chhuneja P, et al. (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100:771–776. doi: 10.1093/jhered/esp030 CrossRefPubMedGoogle Scholar
  49. Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794. doi: 10.1093/jxb/erl047 CrossRefPubMedGoogle Scholar
  50. Uauy C, Distelfeld A, Fahima T, et al. (2006b) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301. doi: 10.1126/science.1133649 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Van Eeuwijk FA, Bink MCAM, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Curr Opin Plant Biol 13:193–205. doi: 10.1016/j.pbi.2010.01.001 CrossRefPubMedGoogle Scholar
  52. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer V2.5_011. In: Department of Statistics, North Carolina State University,. Raleigh, NCGoogle Scholar
  53. Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274. doi: 10.1093/jxb/erp257 CrossRefPubMedGoogle Scholar
  54. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364. doi: 10.1093/jxb/erh064 CrossRefPubMedGoogle Scholar
  55. White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 2:80. doi: 10.3389/fpls.2011.00080 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wu C, Lu L, Yang X, et al. (2010) Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem 58:6767–6773. doi: 10.1021/jf100017e CrossRefPubMedGoogle Scholar
  57. Xu Y, An D, Liu D, et al. (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crops Res 138:57–62. doi: 10.1016/j.fcr.2012.09.017 CrossRefGoogle Scholar
  58. Xue Y-F, Yue S-C, Zhang Y-Q, et al. (2012) Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant Soil 361:153–163. doi: 10.1007/s11104-012-1510-2 CrossRefGoogle Scholar
  59. Zarcinas B, Cartwright B, Spouncer L (1987) Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal 18:137–146CrossRefGoogle Scholar
  60. Zhang X, Zhang G, Guo L, et al. (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173–179. doi: 10.1007/s10681-011-0346-9 CrossRefGoogle Scholar
  61. Zhao D, Derkx AP, Liu D-C, et al. (2015) Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol. doi: 10.1111/plb.12296 Google Scholar
  62. Zhou M-L, Qi L-P, Pang J-F, et al. (2013) Nicotianamine synthase gene family as central components in heavy metal and phytohormone response in maize. Funct Integr Genomics 13:229–239. doi: 10.1007/s10142-013-0315-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shahid Hussain
    • 1
    • 2
    • 3
  • Zed Rengel
    • 1
    Email author
  • Seyed A. Mohammadi
    • 4
  • Asghar Ebadi-Segherloo
    • 5
  • Muhammad A. Maqsood
    • 2
  1. 1.The UWA Institute of Agriculture, School of Earth and EnvironmentThe University of Western AustraliaCrawleyAustralia
  2. 2.Institute of Soil and Environmental SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
  3. 3.Department of Soil Science, Faculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPakistan
  4. 4.Department of Plant Breeding and Biotechnology, Faculty of AgricultureUniversity of TabrizTabrizIran
  5. 5.Moghan College of Agriculture and Natural ResourcesUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations