Plant and Soil

, Volume 398, Issue 1–2, pp 153–163 | Cite as

Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system

  • A. MarxenEmail author
  • T. Klotzbücher
  • R. Jahn
  • K. Kaiser
  • V. S. Nguyen
  • A. Schmidt
  • M. Schädler
  • D. Vetterlein
Regular Article


Background and aims

Rice plants (Oryza sativa L.) contain large quantities of silicon (Si) in form of phytoliths, which increase their resistance to abiotic and biotic stresses. The Si cycle through rice fields is hardly studied. We tested how increasing Si availability affects rice growth and the decomposability of the straw. Secondly we tested the role of straw recycling for Si availability.


In a field experiment, we applied three levels of silica gel during one rice cropping season. In a follow-up laboratory experiment, we used straw produced in the field experiment, having different Si concentrations, and studied straw decomposition, straw Si release, and Si uptake by plants.


Silicon fertilization increased Si contents, biomass production, and grain yield of rice plants. Increased Si uptake by rice decreased concentrations of C and some essential nutrients (N, P, K, Ca, and Mg) in the straw, and increased straw decomposability and Si release.


Fertilization with silica gel is an option to improve Si supply to rice plants growing on weathered soils with low levels of plant-available Si. Phytoliths from fresh rice straw dissolve fast in soil, thus, recycling of rice straw is an important source of plant-available Si.


Paddy soils Phytolith dissolution Rice straw decomposition Rice straw recycling Silicon fertilization Vietnam 



This work has been financed by the LEGATO project of the German Ministry for Education and Research (BMBF). We thank the coordinator of the project, Josef Settele, for his support. We thank Nguyen Hung Manh for the field work and Alexandra Boritzki, Aleksey Prays, Susanne Horka, Andreas Rämmler, Jutta Fröhlich, and Bernd Apelt for technical assistance. We thank the farmers for allowing us to establish the experiment on their paddies.


  1. Ackermann J, Vetterlein D, Tanneberg H, Neue H-U, Mattusch J, Jahn R (2008) Speciation of arsenic under dynamic conditions. Eng Life Sci 8(6):589–597CrossRefGoogle Scholar
  2. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449CrossRefGoogle Scholar
  3. Cooke J, Leishman MR (2011) Silicon concentration and leaf longevity: is silicon a player in the leaf dry mass spectrum? Funct Ecol 25:1181–1188CrossRefGoogle Scholar
  4. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071CrossRefPubMedGoogle Scholar
  5. De Datta SK (1981) Principles and practices of rice production. International Rice Research Institute, Los BanosGoogle Scholar
  6. Dobermann A, Fairhurst T (2000) Rice: nutrient disorders & nutrient management. International Rice Research Institute, Los BanosGoogle Scholar
  7. Epstein E (1999) Silicon. Annu Rev Plant Biol 50(1):641–664CrossRefGoogle Scholar
  8. FAO (2006) Guidelines for soil description. Food and Agriculture Organisation of the United Nations, RomeGoogle Scholar
  9. Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258(3):197–206CrossRefGoogle Scholar
  10. Guntzer F, Keller C, Meunier J-D (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32(1):201–213CrossRefGoogle Scholar
  11. Haysom MB, Ostatek‐Boczynski ZA (2006) Rapid, wet oxidation procedure for the estimation of silicon in plant tissue. Comm Soil Sci Plant Anal 37(15–20):2299–2306CrossRefGoogle Scholar
  12. Hossain KA, Horiuchi T, Miyagawa S (2001) Effects of silicate materials on growth and grain yield of rice plants grown in clay loam and sandy loam soils. J Plant Nutr 24(1):1–13CrossRefGoogle Scholar
  13. IRRI (1997) IRRI Rice Facts. International Rice Research Institute, Los BanosGoogle Scholar
  14. IUSS Working Group (2014) World reference base for soil classification 2014. World soil resources report 106. Food and Agriculture Organisation of the United Nations, RomeGoogle Scholar
  15. Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. Adv Agron 19:107–149CrossRefGoogle Scholar
  16. Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92(5):1052–1062CrossRefPubMedGoogle Scholar
  17. Klotzbücher T, Marxen A, Vetterlein D, Schneiker J, Türke M, Sinh NV, Manh NH, Chien HV, Marquez L, Villareal S, Bustamante JV, Jahn R (2014) Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl Ecol. doi: 10.1016/j.baae.2014.08.002 Google Scholar
  18. Klotzbücher T, Leuther F, Marxen A, Vetterlein D, Horgan FG, Jahn R (2015) Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines). Plant Soil. doi: 10.1007/s11104-015-2480-y Google Scholar
  19. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  20. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688–691CrossRefPubMedGoogle Scholar
  21. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448(7150):209–212CrossRefPubMedGoogle Scholar
  22. Parr JF, Sullivan LA (2011) Phytolith occluded carbon and silica variability in wheat cultivars. Plant Soil 342(1–2):165–171CrossRefGoogle Scholar
  23. Piperno DR (2014) Phytolyth analysis: an archaeological and geological perspective. Elsevier, AmsterdamGoogle Scholar
  24. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58(2):179–207CrossRefGoogle Scholar
  25. Santos GM, Alexandre A, Coe HH, Reyerson PE, Southon JR, De Carvalho CN (2010) The phytolith 14C puzzle: a tale of background determinations and accuracy tests. Radiocarbon 52(1):113CrossRefGoogle Scholar
  26. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80(1):89–108CrossRefGoogle Scholar
  27. Schaller J (2013) Invertebrate grazers are a crucial factor for grass litter mass loss and nutrient mobilization during aquatic decomposition. Fundam Appl Limnol 183:287–295CrossRefGoogle Scholar
  28. Schaller J, Struyf E (2013) Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 709(1):201–212CrossRefGoogle Scholar
  29. Schaller J, Hines J, Brackhage C, Bäucker E, Gessner MO (2014) Silica decouples fungal growth and litter decomposition without changing responses to climate warming and N enrichment. Ecology 95(11):3181–3189CrossRefGoogle Scholar
  30. Schmidt A, Auge H, Brandl R, Heong KL, Hotes S, Settele J, Villareal S, Schädler M (2015a) Small-scale variability in the contribution of invertebrates to litter decomposition in tropical rice fields. Basic Appl Ecol. doi: 10.1016/j.baae.2015.01.006
  31. Schmidt A, John K, Arida G, Auge H, Brandl R, Horgan FG, Hotes S, Marques L, Radermacher N, Settele J, Wolters V, Schädler (2015b). Effects of residue management on decomposition in irrigated rice fields are not related to changes in the decomposer community. PLoS ONE 10(7):e0134402. doi: 10.1371/journal.pone.0134402
  32. Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186(2):385–391CrossRefPubMedGoogle Scholar
  33. Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA (2008) Litter quality is in the eye of the beholder: initial decomposition rates as function of inoculum characteristics. Funct Ecol 23(3):627–636CrossRefGoogle Scholar
  34. Watanabe T, Luu HN, Nguyen NH, Ito O, Inubushi K (2013) Combined effects of the continual application of composted rice straw and chemical fertilizer on rice yield under a double rice cropping system in the Mekong Delta, Vietnam. JARQ 47(4):397–404CrossRefGoogle Scholar
  35. Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21(9):2878–2883CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Marxen
    • 1
    Email author
  • T. Klotzbücher
    • 2
  • R. Jahn
    • 2
  • K. Kaiser
    • 2
  • V. S. Nguyen
    • 4
  • A. Schmidt
    • 3
  • M. Schädler
    • 3
  • D. Vetterlein
    • 1
  1. 1.Helmholtz Centre for Environmental Research - UFZ, Soil PhysicsHalleGermany
  2. 2.Institute of Agricultural and Nutritional Sciences, Soil ScienceMartin-Luther-University Halle-WittenbergHalleGermany
  3. 3.Helmholtz Centre for Environmental Research - UFZ, Community EcologyHalleGermany
  4. 4.Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations