Advertisement

Plant and Soil

, Volume 403, Issue 1–2, pp 129–152 | Cite as

Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority

  • Fernando A. O. Silveira
  • Daniel Negreiros
  • Newton P. U. Barbosa
  • Elise Buisson
  • Flávio F. Carmo
  • Daniel W. Carstensen
  • Abel A. Conceição
  • Tatiana G. Cornelissen
  • Lívia Echternacht
  • G. Wilson Fernandes
  • Queila S. Garcia
  • Tadeu J. Guerra
  • Claudia M. Jacobi
  • José P. Lemos-Filho
  • Soizig Le Stradic
  • Leonor Patrícia C. Morellato
  • Frederico S. Neves
  • Rafael S. Oliveira
  • Carlos E. Schaefer
  • Pedro L. Viana
  • Hans Lambers
Marschner Review

Abstract

Background

Botanists, ecologists and evolutionary biologists are familiar with the astonishing species richness and endemism of the fynbos of the Cape Floristic Region and the ancient and unique flora of the kwongkan of south-western Australia. These regions represent old climatically-buffered infertile landscapes (OCBILs) that are the basis of a general hypothesis to explain their richness and endemism. However, few ecologists are familiar with the campo rupestre of central and eastern Brazil, an extremely old mountaintop ecosystem that is both a museum of ancient lineages and a cradle of continuing diversification of endemic lineages.

Scope

Diversification of some lineages of campo rupestre pre-dates diversification of lowland cerrado, suggesting it may be the most ancient open vegetation in eastern South America. This vegetation comprises more than 5000 plant species, nearly 15 % of Brazil’s plant diversity, in an area corresponding to 0.78 % of its surface. Reviewing empirical data, we scrutinise five predictions of the OCBIL theory, and show that campo rupestre is fully comparable to and remarkably convergent with both fynbos and kwongkan, and fulfills the criteria for a classic OCBIL.

Conclusions

The increasing threats to campo rupestre are compromising ecosystem services and we argue for the implementation of more effective conservation and restoration strategies.

Keywords

Biodiversity hotspot Canga Endemism Functional ecology Nutrient-impoverished soils OCBIL theory Plant biogeography 

Notes

Acknowledgments

We thank Peter Reich, Ian Wright and Simon Pierce for original data on leaf functional traits and Marcos Callisto for providing coordinates. The comments of two reviewers and RC Colwell improved early versions of the manuscript. This research was funded by Conselho Nacional de Pesquisa e Desenvolvimento (APQ-03199-13, 561883/2010-6, 311301/2011-8, 482720/2012), Fundação de Amparo à Pesquisa de Minas Gerais (APQ-04105-10, APQ-02231-12), Sao Paulo Research Foundation (2013/50155-0, 2014/01594-4), the Ministère Français des affaires étrangères et européennes (EGIDE 2009/657176K) and French Embassy / UNESP Rio Claro Chairs 2012 and 2014. We thank CAPES for granting a PVE / Ciência sem fronteiras scholarship (88881.068071/2014-01) to HL and RSO. FAOS, AAC, LPCM, JPLF, CMJ, FSN, GWF, CES, RSO, and QSG received research productivity scholarships from CNPq.

Supplementary material

11104_2015_2637_MOESM1_ESM.doc (100 kb)
ESM 1 (DOC 100 kb)

References

  1. Abrahão A, Lambers H, Sawaya ACHF, Mazzafera P, Oliveira RS (2014) Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia 176:345–355PubMedCrossRefGoogle Scholar
  2. Alcântara S, Mello-Silva R, Teodoro GS, Drequeceler K, Ackerly D, Oliveira RS (2015) Carbon assimilation and habitat segregation in resurrection plants: comparison between desiccation- and non-desiccation-tolerant species of neotropical Velloziaceae (Pandanales). Funct EcolGoogle Scholar
  3. Alkmim FF, Marshak S (1998) Transamazonian orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res 90:29–58CrossRefGoogle Scholar
  4. Alkmin FF (2012) Serra do Espinhaço e Chapada Diamantina. In: Hasui Y, Carneiro CDR, Almeida FFM, Bartorelli A (eds) Geologia do Brasil. Beca, São Paulo, pp 236–244Google Scholar
  5. Allsopp N, Colville JF, Verboom GA (eds) (2014) Fynbos: ecology, evolution, and conservation of a megadiverse region. Oxford University Press, New YorkGoogle Scholar
  6. Alves RJV (1994) Morphological age determination and longevity in some Vellozia populations in Brazil. Folia Geobot 29:55–59CrossRefGoogle Scholar
  7. Alves RJV, Kolbek J (1994) Plant species endemism in savanna vegetation on table mountais (Campo Rupestre) in Brazil. Vegetatio 113:125–139Google Scholar
  8. Alves RJV, Kolbek J (2010) Can campo rupestre vegetation be floristically delimited based on vascular plant genera? Plant Ecol 207:67–79CrossRefGoogle Scholar
  9. Alves RJV, Silva NG, Fernandes Júnior A, Guimarães AR (2013) Longevity of the Brazilian underground tree Jacaranda decurrens Cham. An Acad Bras Cienc 85:671–677PubMedCrossRefGoogle Scholar
  10. Alves RJV, Silva NG, Oliveira JA, Medeiros D (2014) Circumscribing campo rupestre megadiverse brazilian rocky montane savannas. Braz J Biol 74:355–362PubMedCrossRefGoogle Scholar
  11. Barbosa NPU, Fernandes GW, Carneiro MAA, Júnior LAC (2010) Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil. Biol Invasions 12:3745–3755CrossRefGoogle Scholar
  12. Barbosa NPU, Fernandes GW, Sanchez-Azofeita A (2015) A relict species restricted to a quartzitic mountain in tropical America: an example of microrefugium? Acta Bot Bras 29:299–309CrossRefGoogle Scholar
  13. Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chang Biol 12:2023–2031CrossRefGoogle Scholar
  14. Benites VM, Schaefer CER, Simas FNB, Santos HG (2007) Soil associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev Bras Bot 30:569–577CrossRefGoogle Scholar
  15. Berry PE, Riina R (2005) Insights into the diversity of the Pantepui flora and the biogeographic complexity of the Guayana Shield. Biol Skrif 55:145–167Google Scholar
  16. Bitencourt C, Rapini A (2013) Centres of endemism in the Espinhaço Range: identifying cradles and museums of Asclepiadoideae (Apocynaceae). Syst Biodivers 11:525–536CrossRefGoogle Scholar
  17. Blanche KR, Westoby M (1995) Gall-forming insect diversity is linked to soil fertility via host plant taxon. Ecology 76:2334–2337CrossRefGoogle Scholar
  18. Bonatelli IAS, Perez MF, Peterson AT, Taylor NP, Zappi DC, Machado MC, Koch I, Pires AHC, Moraes EM (2014) Interglacial microrefugia and diversification of a cactus species complex: phylogeography and palaeodistributional reconstructions for Pilosocereus aurisetus and allies. Mol Ecol 23:3044–3063Google Scholar
  19. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  20. Bullock JM (1998) Community translocation in Britain: setting objectives and measuring consequences. Biol Conserv 84:199–214CrossRefGoogle Scholar
  21. Carmo FF (2010) Importância ambiental e estado de conservação dos ecossistemas de cangas no Quadrilátero Ferrífero e proposta de áreas-alvo para a investigação e proteção da biodiversidade em Minas Gerais. Master Thesis: Universidade Federal de Minas GeraisGoogle Scholar
  22. Carmo FF, Jacobi CM (2012) The cangas of the Iron Quadrangle. In: Jacobi CM, Carmo FF (eds) Floristic diversity of the Quadrilátero Ferrífero cangas. IDM, Belo Horizonte, pp 14–30Google Scholar
  23. Carmo FF, Jacobi CM (2013) Canga vegetation in the Iron Quadrangle, Minas Gerais: characterization and phytogeographical context. Rodriguésia 64:527–541CrossRefGoogle Scholar
  24. Carneiro MA, Borges RAX, Araújo APA, Fernandes GW (2009) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG. Rev Bras Entomol 53:570–592CrossRefGoogle Scholar
  25. Carstensen DW, Sabatino M, Trojelsgaard K, Morellato LPC (2014) Beta diversity of plant-pollinator networks and the spatial turnover of pairwise interactions. PLoS One 9, e112903PubMedPubMedCentralCrossRefGoogle Scholar
  26. CBD - Convention of Biological Diversity (2010) COP Decision X/2. Strategic plan for biodiversity 2011–2020. http://www.cbd.int/decision/cop/?id=12268. Accessed 20 June 2014
  27. Cerabolini BEL, Brusa G, Ceriani RM, de Andreis R, Luzzaro A, Pierce S (2010) Can CSR classification be generally applied outside Britain? Plant Ecol 210:253–261CrossRefGoogle Scholar
  28. Cheib AL, Garcia QS (2012) Longevity and germination ecology of seeds of endemic Cactaceae species from high-altitude sites in south-eastern Brazil. Seed Sci Res 21:45–53CrossRefGoogle Scholar
  29. Coan AI, Scatena VL, Giulietti AM (2002) Anatomia de algumas espécies aquáticas de Eriocaulaceae brasileiras. Acta Bot Bras 16:371–384CrossRefGoogle Scholar
  30. Coelho FF, Capelo C, Ribeiro LC, Figueira JEC (2008) Reproductive modes in Leiothrix (Eriocaulaceae) in south-eastern Brazil: the role of microenvironmental heterogeneity. Ann Bot 101:353–360PubMedPubMedCentralCrossRefGoogle Scholar
  31. Collevatti RG, Rabelo SG, Vieira RF (2009) Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann Bot 104:655–664PubMedPubMedCentralCrossRefGoogle Scholar
  32. Conceição AA, Pirani JR (2005) Delimitação de habitats em campos rupestres na Chapada Diamantina, Bahia: substratos, composição florística e aspectos estruturais. Bol Bot Univ São Paulo 23:85–111Google Scholar
  33. Conceição AA, Funch LS, Pirani JR (2007a) Reproductive phenology, pollination and seed dispersal syndromes on sandstone vegetation in the “Chapada Diamantina”, northeastern Brazil: population and community analyses. Rev Bras Bot 30:475–485Google Scholar
  34. Conceição AA, Pirani JR, Meirelles ST (2007b) Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of Chapada Diamantina, northeast Brazil. Rev Bras Bot 30:641–655CrossRefGoogle Scholar
  35. Conceição AA, Alencar TG, Souza JM, Moura ADC, Silva GA (2013) Massive post-fire flowering events in a tropical mountain region of Brazil: high episodic supply of floral resources. Acta Bot Bras 27:847–850CrossRefGoogle Scholar
  36. Costa FN, Trovó M, Sano PT (2008) Eriocaulaceae na Cadeia do Espinhaço: riqueza, endemismo e ameaças. Megadiversidade 4:117–125Google Scholar
  37. Costanza R (2006) Nature: ecosystems without commodifying them. Nature 443:749PubMedCrossRefGoogle Scholar
  38. Cowling RM, Pressey RL, Rouget M, Lombard AT (2003) A conservation plan for a global biodiversity hotspot—the Cape Floristic Region, South Africa. Biol Conserv 112:191–216CrossRefGoogle Scholar
  39. CNCFlora - Centro Nacional de Conservação da Flora (2015) Projeto Lista Vermelha. http://cncflora.jbrj.gov.br/portal/pt-br/projetos/lista-vermelha. Accessed 7 July 2015
  40. CPRM - Companhia de Pesquisas e Recursos Minerais (2004) Projeto APA Sul RMBH: hidrogeologia, mapa hidrogeológico escala 1:50.000.SEMAD/CPRM, Belo HorizonteGoogle Scholar
  41. Dayrell RLC (2015) Ecology and evolution of seed dormancy in campos rupestres. M.Sc. Thesis. Universidade Federal de Minas GeraisGoogle Scholar
  42. de Carvalho F, Souza FA, Carrenho R, Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19CrossRefGoogle Scholar
  43. Domingues SA, Karez CS, Biondini IVF, Andrade MA, Fernandes GW (2012) Economic environmental management tools in the Serra do Espinhaço Biosphere Reserve. J Sustain Dev 5:180–191Google Scholar
  44. Dycus AM, Knudson L (1957) The role of the velamen of the aerial roots of orchids. Bot Gaz 119:78–87CrossRefGoogle Scholar
  45. Echternacht L, Trovó M, Sano PT (2010) Rediscoveries in Eriocaulaceae: seven narrowly distributed taxa from the Espinhaço Range in Minas Gerais, Brazil. Feddes Repert 121:117–126CrossRefGoogle Scholar
  46. Echternacht L, Sano PT, Trovó M, Dubuisson J (2011a) Phylogenetic analysis of the Brazilian microendemic Paepalanthus subgenus Xeractis (Eriocaulaceae) inferred from morphology. Bot J Linn Soc 167:137–152CrossRefGoogle Scholar
  47. Echternacht L, Trovó M, Oliveira CT, Pirani JR (2011b) Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil. Flora 206:782–791CrossRefGoogle Scholar
  48. Echternacht L, Sano PT, Bonillo C, Cruaud C, Couloux A, Dubuisson J-Y (2014) Phylogeny and taxonomy of Syngonanthus and Comanthera (Eriocaulaceae): evidence from expanded sampling. Taxon 63:47–63CrossRefGoogle Scholar
  49. Espírito-Santo MM, Neves FS, Andrade-Neto FR, Fernandes GW (2007) Plant architecture and meristem dynamics as the mechanism determining the diversity of gall-inducing insects. Oecologia 153:353–364PubMedCrossRefGoogle Scholar
  50. Faucon M-P, Meersseman A, Shutcha MN, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143:5–18CrossRefGoogle Scholar
  51. Faustino TC, Machado CG (2006) Frugivoria por aves em uma área de campo rupestre na Chapada Diamantina, BA. Ararajuba 14:137–143Google Scholar
  52. Feres F, Zucchi MI, Souza AP, Amaral MCE, Bittrich V (2009) Phylogeographic studies of Brazilian “campo-rupestre” species: Wunderlichia mirabilis Riedel ex Baker (Asteraceae). Biotemas 22:17–26CrossRefGoogle Scholar
  53. Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167CrossRefGoogle Scholar
  54. Fernandes GW, Barbosa NPU, Negreiros D, Paglia AP (2014) Challenges for the conservation of vanishing megadiverse rupestrian grasslands. Nat Conservacao 12:162–165CrossRefGoogle Scholar
  55. Fidelis A, Appezzato-da-Glória B, Pillar VD, Pfadenhauer J (2014) Does disturbance affect bud bank size and belowground structures diversity in Brazilian subtropical grasslands? Flora 209:110–116CrossRefGoogle Scholar
  56. Flematti GR, Merritt DJ, Piggott MJ, Trengove RD, Smith SM, Dixon KW, Ghisalberti EL (2011) Burning vegetation produces cyanohydrins that liberate cyanide and promote seed germination. Nat Commun 2:360PubMedCrossRefGoogle Scholar
  57. Fonseca RBS, Funch LS, Borba EL (2012) Dispersão de sementes de Melocactus glaucescens e M. paucispinus (Cactaceae), no Município de Morro do Chapéu, Chapada Diamantina—BA. Acta Bot Bras 26:481–492Google Scholar
  58. Forzza RC, Baumgratz JFA, Bicudo CE, Carvalho AA Jr, Costa A, Costa DP, Hopkins M, Leitman PM, Lohmann LG, Maia LC, Martinelli G, Menezes M, Morim MP, Coelho MAN, Peixoto AL, Pirani JR, Prado J, Queiroz LP, Souza VC, Stehmann JR, Sylvestre LS, Walter BMT, Zappi D (2010) Catálogo de Plantas e Fungos do Brasil, vol 1. Andrea Jakobsson Estúdio. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  59. Frisby S, Hindy DJN (2014) Ichthyothere sasakiae, (Compositae: Heliantheae: Milleriinae), a new species from the Amazonian campo rupestre of northern Mato Grosso State, Brazil. Kew Bull 69:9504CrossRefGoogle Scholar
  60. Fujita Y, Venterink HO, van Bodegom PM, Douma JC, Heil GW, Holzel N, Jablonska E, Kotowski W, Okruszko T, Pawlikowski P, de Ruiter PC, Wassen MJ (2014) Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 505:82–86PubMedCrossRefGoogle Scholar
  61. Garcia RJF, Longhi-Wagner HM, Pirani JR, Meirelles ST (2009) A contribution to the phytogeography of Brazilian campos: an analysis based on Poaceae. Rev Bras Bot 32:703–713CrossRefGoogle Scholar
  62. Garcia QS, Giorni VT, Müller M, Munné-Bosch S (2012) Common and distinct responses in phytohormone and vitamin E changes during seed burial and dormancy in Xyris bialata and X. peregrina. Plant Biol 14:347–353PubMedCrossRefGoogle Scholar
  63. Garcia QS, Oliveira PG, Duarte DM (2014) Seasonal changes in germination and dormancy of buried seeds of endemic Brazilian Eriocaulaceae. Seed Sci Res 24:113–117CrossRefGoogle Scholar
  64. Gibson N, Yates CJ, Dillon R (2010) Plant communities of the ironstone ranges of South Western Australia: hotspots for plant diversity and mineral deposits. Biodivers Conserv 19:3951–3962CrossRefGoogle Scholar
  65. Gibson N, Meissner R, Markey AS, Thompson WA (2012) Patterns of plant diversity in ironstone ranges in arid south western Australia. J Arid Environ 77:25–31CrossRefGoogle Scholar
  66. Ginocchio R, Baker AJM (2004) Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region. Rev Chil Hist Nat 77:185–194CrossRefGoogle Scholar
  67. Giulietti AM, Menezes NL, Pirani JR, Meguro M, Wanderley MGL (1987) Flora da Serra do Cipó: caracterização e lista das espécies. Bol Bot Univ São Paulo 9:1–151Google Scholar
  68. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço Range region, eastern Brazil. In: Davis SD, Heywood VH, Herrera-Macbryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: a guide and strategy for their conservation. IUCN Publication Unit, Cambridge, pp 397–404Google Scholar
  69. Giulietti AM, Rapini A, Andrade MJG, Queiroz LP, Silva JMC (eds) (2009) Rare plants of Brazil. Conservation International, Belo HorizonteGoogle Scholar
  70. Goldblatt P, Manning JC (2002) Plant diversity of Cape region of Southern Africa. Ann Mo Bot Gard 89:281–302CrossRefGoogle Scholar
  71. Gomes V, Madeira JA, Fernandes GW, LemosFilho JP (2001) Seed dormancy and germination of sympatric species of Chamaecrista (Leguminosae) in a rupestrian field. Int J Ecol Environ Sci 27:191–197Google Scholar
  72. Gomes V, Collevatti RG, Silveira FAO, Fernandes GW (2004) The distribution of genetic variability in Baccharis concinna (Asteraceaea), an endemic, dioecious and threatened shrub of rupestrian fields of Brazil. Conserv Genet 5:157–165CrossRefGoogle Scholar
  73. Griffiths CA, Gaff DF, Neale AD (2014) Drying without senescence in resurrection plants. Front Plant Sci 5:36PubMedPubMedCentralCrossRefGoogle Scholar
  74. Groppo M, Amaral MM, Ceccantini GCT (2007) Flora da Serra do Cipó, Minas Gerais: Apodanthaceae (Rafflesiaceae s.l.), e notas sobre a anatomia de Pilostyles. Bol Bot Univ São Paulo 25:81–86Google Scholar
  75. Guerra TJ, Pizo MA (2014) Asymmetrical dependence between a Neotropical mistletoe and its avian seed disperser. Biotropica 46:285–293CrossRefGoogle Scholar
  76. Gustafsson ALS, Verola CF, Antonelli A (2010) Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evol Biol 10:177PubMedPubMedCentralCrossRefGoogle Scholar
  77. Harley RM (1988) Evolution and distribution of Eriope (Labiatae) and its relatives in Brazil. In: Vanzolini PE, Heyer WR (eds) Proceedings of a workshop on Neotropical distribution patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp 71–121Google Scholar
  78. Hedberg O (1973) Adaptive evolution in a Tropical-Alpine environment. In: Heywood VH (ed) Taxonomy and ecology. Academic, London, pp 71–92Google Scholar
  79. Hensold N (1988) Morphology and systematics of Paepalanthus subgenus Xeractis (Eriocaulaceae). Systematic Botany Monographs 23, Ann ArborGoogle Scholar
  80. Holmes PM, Newton RJ (2004) Patterns of seed persistence in South African fynbos. Plant Ecol 172:143–158CrossRefGoogle Scholar
  81. Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86CrossRefGoogle Scholar
  82. Huber O (2006) Herbaceous ecosystems on the Guayana Shield, a regional overview. J Biogeogr 33:464–475CrossRefGoogle Scholar
  83. Hughes CE, Pennington RT, Antonelli A (2013) Neotropical plant evolution: assembling the big picture. Bot J Linn Soc 171:1–18CrossRefGoogle Scholar
  84. Ilunga wa Ilunga E, Mahy G, Piqueray J, Séleck M, Shutcha MN, Meerts P, Faucon M-P (2015) Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: a case study in copper vegetation of Katanga, DRC. Ecol Eng 82:214–221CrossRefGoogle Scholar
  85. IUCN Standards and Petitions Subcommittee (2011) Guidelines for using the IUCN Red List categories and criteria. Version 9.0. IUCN Standards and Petitions SubcommitteeGoogle Scholar
  86. Jacobi CM, Carmo FF (2011) Life-forms, pollination and seed dispersal syndromes in plant communities on ironstone outcrops, SE Brazil. Acta Bot Bras 25:395–412CrossRefGoogle Scholar
  87. Jacobi CM, Carmo FF (2012) Diversidade florística nas cangas do Quadrilátero Ferrífero. IDM, Belo HorizonteGoogle Scholar
  88. Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops—a diverse and endangered Brazilian ecosystem. Biodivers Conserv 16:2185–2200CrossRefGoogle Scholar
  89. Jacobi CM, Carmo FF, Campos IC (2011) Soaring extinction threats to endemic plants in Brazilian metal-rich regions. AMBIO 40:540–543PubMedPubMedCentralCrossRefGoogle Scholar
  90. Keeley JE, Bond WJ (1997) Convergent seed germination in South African fynbos and Californian chaparral. Plant Ecol 133:153–167CrossRefGoogle Scholar
  91. Kolbek J, Alves RJV (2008) Impacts of cattle, fire and wind in rocky savannas, southeastern Brazil. Acta Univ Carol Environ 22:111–130Google Scholar
  92. Lambers H (ed) (2014) Plant life on the sandplains in Southwest Australia: a global biodiversity hotspot. UWA Publishing, CrawleyGoogle Scholar
  93. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103PubMedCrossRefGoogle Scholar
  94. Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31CrossRefGoogle Scholar
  95. Lambers H, Colmer TD, Hassiotou F, Mitchell PM, Poot P, Shane MW, Veneklaas EJ (2014a) Carbon and water relations. In: Lambers H (ed) Plantlife on the sandplains in Southwest Australia: a global biodiversity hotspot. UWA Publishing, Crawley, pp 129–146Google Scholar
  96. Lambers H, Shane MW, Laliberté E, Swarts ND, Teste FP, Zemunik G (2014b) Plant mineral nutrition. In: Lambers H (ed) Plant life on the sandplains in Southwest Australia: a global biodiversity hotspot. UWA Publishing, Crawley, pp 101–128Google Scholar
  97. Lamont BB, Le Maitre DC, Cowling RM, Enright NJ (1991) Canopy seed storage in woody plants. Bot Rev 57:277–317CrossRefGoogle Scholar
  98. Le Stradic S (2012) Composition, phenology and restoration of campos rupestres mountain grasslands, Brazil. Ph.D. Thesis.Universidade Federal de Minas GeraisGoogle Scholar
  99. Le Stradic S, Buisson E, Fernandes GW (2014a) Restoration of Neotropical grasslands degraded by quarrying using hay transfer. Appl Veg Sci 17:482–492CrossRefGoogle Scholar
  100. Le Stradic S, Buisson E, Negreiros D, Campagne P, Fernandes GW (2014b) The role of native woody species in the restoration of campos rupestres in quarries. Appl Veg Sci 17:109–120CrossRefGoogle Scholar
  101. Le Stradic S, Buisson E, Fernandes GW (2015a) Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. J Mount Sci 12:864–877CrossRefGoogle Scholar
  102. Le Stradic S, Silveira FAO, Buisson E, Cazelles K, Carvalho V, Fernandes GW (2015b) Diversity of germination strategies and seed dormancy in herbaceous species of campo rupestre grasslands. Austral Ecol 40:537–546CrossRefGoogle Scholar
  103. Leles B, Chaves AV, Russo P, Batista JAN, Lovato MB (2015) Genetic structure is associated with phenotypic divergence in floral traits and reproductive investment in a high-altitude orchid from the Iron Quadrangle, southeastern Brazil. PLoS One 10, e0120645PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lima MHC, Oliveira EG, Silveira FAO (2013) Interactions between ants and non-myrmecochorous fruits in Miconia (Melastomataceae) in a Neotropical Savanna. Biotropica 45:217–223CrossRefGoogle Scholar
  105. Lopes-Mattos KLB, Azevedo AA, Soares AA, Meira RMSA (2013) Underground system of Mandevilla atroviolacea (Stadelm.) Woodson (Apocynaceae, Apocynoideae) from the Brazilian high-altitude grassland. S Afr J Bot 87:27–33CrossRefGoogle Scholar
  106. Lousada JM, Borba EL, Ribeiro KT, Ribeiro LC, Lovato MB (2011) Genetic structure and variability of the endemic and vulnerable Vellozia gigantea (Velloziaceae) associated with the landscape in the Espinhaço Range, in southeastern Brazil: implications for conservation. Genetica 139:431–440PubMedCrossRefGoogle Scholar
  107. LSBF - List of Species of the Brazilian Flora (2015) Rio de Janeiro Botanical Garden. http://floradobrasil.jbrj.gov.br/. Accessed 26 May 2015
  108. Lusa MG, Appezzato-da-Glória B, Loeuille B, Bartoli G, Ciccarelli D (2014) Functional groups in Lychnophorinae (Asteraceae: Vernonieae) based on morphological and anatomical traits. Austral J Bot 62:150–163CrossRefGoogle Scholar
  109. Lüttge U, Haridasan M, Fernandes GW, Mattos EA, Trimborn P, Franco AC, Caldas LS, Zielgler H (1998) Photosynthesis of mistletoes in relation to their host at various sites of tropical Brazil. Trees 12:167–174CrossRefGoogle Scholar
  110. Lüttge U, Duarte HM, Scarano FR, Mattos EA, Cavalin PO, Franco AC, Fernandes GW (2007) Physiological ecology of photosynthesis of five sympatric species of Velloziaceae in the “campos rupestres” vegetation of Serra do Cipó, Minas Gerais, Brazil. Flora 202:637–646CrossRefGoogle Scholar
  111. Machado NADM, Leite MGP, Figueiredo MA, Kozovits AR (2013) Growing Eremanthus erythropappus in crushed laterite: a promising alternative to topsoil for bauxite-mine revegetation. J Environ Manag 129:149–156CrossRefGoogle Scholar
  112. Madeira JA, Ribeiro KT, Oliveira MJR, Paiva CL (2008) Distribuição espacial do esforço de pesquisa biológica na Serra do Cipó, Minas Gerais: subsídios ao manejo das unidades de conservação da região. Megadiversidade 4:257–271Google Scholar
  113. Manning J (2007) Field guide to fynbos. Struik Publishers, Cape TownGoogle Scholar
  114. Marques AR, Atman APF, Silveira FAO, Lemos-Filho JP (2014) Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation. Plant Ecol 215:517–529CrossRefGoogle Scholar
  115. Martin CE, von Willert DJ (2000) Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in Southern Africa. Plant Biol 2:229–242CrossRefGoogle Scholar
  116. Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Centro Nacional de Conservação da Flora, Rio de JaneiroGoogle Scholar
  117. Matias SR, Pagano MC, Muzzi FC, Oliveira CA, Carneiro AA, Horta SN, Scotti MR (2009) Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. Eur J Soil Biol 45:259–266CrossRefGoogle Scholar
  118. Medina MBO, Fernandes GW (2007) The potential of natural regeneration of rocky outcrop vegetation on rupestrian field soils in “Serra do Cipó”, Brazil. Rev Bras Bot 30:665–678CrossRefGoogle Scholar
  119. MMA - Ministério do Meio Ambiente (2014) Tabela consolidada das Unidades de Conservação. http://www.mma.gov.br/cadastro_uc. Accessed 18 Nov 2014
  120. Meissner R, Owen G, Bayliss B (2009) Flora and vegetation of banded iron formations of the Yilgarn Craton: Cashmere Downs Range. Conserv Sci West Aust 7:349–361Google Scholar
  121. Mello-Silva R (1989) Velloziaceae de Grão-Mogol, Minas Gerais, Brazil. MSc Thesis. Universidade de São PauloGoogle Scholar
  122. Mello-Silva R, Santos DYAC, Salatino MLF, Motta LB, Cattai MB, Sasaki D, Lovo J, Pita PB, Rocini C, Rodrigues CDN, Zarrei M, Chase MW (2011) Five vicarious genera from Gondwana: the Velloziaceae as shown by molecules and morphology. Ann Bot 108:87–102PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mendonça MP, Lins LV (2000) Lista vermelha das espécies ameaçadas de extinção da flora do estado de Minas Gerais. Fundação Biodiversitas & Fundação Zoo-Botânica de Belo Horizonte, Belo HorizonteGoogle Scholar
  124. Milberg P, Andersson L, Thompson K (2000) Large-seeded species are less dependent on light for germination then small-seeded ones. Seed Sci Res 10:99–104CrossRefGoogle Scholar
  125. Milewski AV, Bond WJ (1982) Convergence of myrmecochory in Mediterranean Australia and South Africa. In: Buckley RC (ed) Ant-plant interactions in Australia. Junk Press, The Hague, pp 89–98CrossRefGoogle Scholar
  126. Miola DTB, Fernandes GW (2015) Growing straight versus growing decumbent: soil quality and allometry in Syagrus glaucescens Becc. (Arecaceae), an endemic and threatened palm of the Espinhaço Mountains, Brazil. Acta Bot Bras 29:417–424CrossRefGoogle Scholar
  127. Morales M, Garcia QS, Siqueira-Silva AI, Silva MC, Munné-Bosch S (2014) Tocotrienols in Vellozia gigantea leaves: occurrence and modulation by seasonal and plant size effects. Planta 240:437–446PubMedCrossRefGoogle Scholar
  128. Morales M, Garcia QS, Munné-Bosch S (2015) Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea. Tree Physiol 35:253–265PubMedCrossRefGoogle Scholar
  129. Moreira ASFP, Lemos-Filho JP, Zotz G, Isaias RMS (2009) Anatomy and photosynthetic parameters of roots and leaves of two shade-adapted orchids, Dichaea cogniauxiana Shltr. and Epidendrum secundum Jacq. Flora 204:604–611CrossRefGoogle Scholar
  130. Mourão FA, Carmo FF, Sousa PRA, Jacobi CM (2006) Hospedeiras de Struthanthus flexicaulis (Mart.) Mart. (Loranthaceae) em campos rupestres ferruginosos no Quadrilátero Ferrífero, Minas Gerais. Lundiana 7:103–110Google Scholar
  131. Mucina L, Laliberté E, Thiele KR, Dodson JR, Harvey J (2014) Biogeography of kwongan: origins, diversity, endemism, and vegetation patterns. In: Lambers H (ed) Plant life on the sandplains in Southwest Australia, a global biodiversity hotspot. UWA Publishing, Crawley, pp 35–79Google Scholar
  132. Munné-Bosch S, Oñate M, Oliveira PG, Garcia QS (2011) Changes in phytohormones and oxidative stress markers in buried seeds of Vellozia alata. Flora 206:704–711CrossRefGoogle Scholar
  133. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  134. Nativel N, Buisson E, Silveira FAO (2015) Seed storage-mediated dormancy alleviation in Fabaceae from campo rupestre. Acta Bot Bras 29:445–447CrossRefGoogle Scholar
  135. Negreiros D, Fernandes GW, Silveira FAO, Chalub C (2009) Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecol 35:301–310CrossRefGoogle Scholar
  136. Negreiros D, Fernandes GW, Berbara RLL, Rodarte LHO, Barbosa NPU (2011) Caracterização físico-química de solos quartzíticos degradados e áreas adjacentes de campo rupestre na Serra do Cipó, MG, Brasil. Neotrop Biol Conserv 6:156–161Google Scholar
  137. Negreiros D, Le Stradic S, Fernandes GW, Rennó HC (2014) CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecol 215:379–388CrossRefGoogle Scholar
  138. Neves SPS, Conceição AA (2010) Campo rupestre recém-queimado na Chapada Diamantina, Bahia, Brasil: plantas de rebrota e sementes, com espécies endêmicas na rocha. Acta Bot Bras 24:697–707CrossRefGoogle Scholar
  139. Neves AC, Nogueira FB, Assis LR, Paglia AP, Bedê LC, Martins RP (2014) Reproductive allocation in rhizomatous, seminiferous, and pseudoviviparous Leiothrix (Eriocaulaceae) species. Plant Ecol 215:987–996CrossRefGoogle Scholar
  140. Nishi AH, Vasconcellos-Neto J, Romero GQ (2013) The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Ann Bot 111:143–150PubMedPubMedCentralCrossRefGoogle Scholar
  141. Nobel PS, Schulte PJ, North GB (1990) Water influx characteristics and hydraulic conductivity for roots of Agave deserti Engelm. J Exp Bot 41:409–415CrossRefGoogle Scholar
  142. Olesen JM, Valido A (2004) Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol Evol 18:177–181CrossRefGoogle Scholar
  143. Oliveira PG, Garcia QS (2011) Germination characteristics of Syngonanthus seeds (Eriocaulaceae) in campos rupestres vegetation in south-eastern Brazil. Seed Sci Res 21:35–41CrossRefGoogle Scholar
  144. Oliveira MNS, Cruz SM, Sousa AM, Moreira FC, Tanaka MK (2014) Implications of the harvest time on Syngonanthus nitens (Bong.) Ruhland (Eriocaulaceae) management in the state of Minas Gerais. Braz J Bot 37:95–103CrossRefGoogle Scholar
  145. Oliveira RS, Galvão HC, de Campos MCR, Eller CB, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194PubMedCrossRefGoogle Scholar
  146. Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN (2014) Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol Evol 29:205–213PubMedCrossRefGoogle Scholar
  147. Pedreira AJ, De Waele B (2008) Contemporaneous evolution of the Palaeoproterozoic-Mesoproterozoic sedimentary basins of the São Francisco-Congo Craton. In: Pankhurst RJ, Trouw RAJ, Neves BBB, De Wit MJ (eds) West Gondwana: pre-cenozoiccorrelations across the South Atlantic region. Geological Society (Special Publications 294), London, pp 33–48Google Scholar
  148. Pereira CG, Almenara DP, Winter CE, Fritsch PW, Lambers H, Oliveira RS (2012) Underground leaves of Philcoxia trap and digest nematodes. Proc Natl Acad Sci U S A 109:1154–1158PubMedPubMedCentralCrossRefGoogle Scholar
  149. Pignatti E, Pignatti S, Lucchese F (1993) Plant communities of Stirling Range, Western Australia. J Veg Sci 4:477–488CrossRefGoogle Scholar
  150. Poot P, Lambers H (2008) Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytol 178:371–381PubMedCrossRefGoogle Scholar
  151. Porembski S, Barthlott W (1995) On the occurrence of a velamen radicum in Cyperaceae and Velloziaceae. Nord J Bot 15:625–629CrossRefGoogle Scholar
  152. Price PW, Fernandes GW, Lara ACF, Brawn J, Gerling D, Barrios H, Wright M, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–592CrossRefGoogle Scholar
  153. Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the ecuadorian páramos. Plant Ecol 131:173–192CrossRefGoogle Scholar
  154. Ranieri BD, Pezzini FF, Garcia QS, Chautems A, França MGC (2012) Testing the regeneration niche hypothesis with Gesneriaceae (tribe Sinningiae) in Brazil: implications for the conservation of rare species. Austral Ecol 37:125–133CrossRefGoogle Scholar
  155. Rapini A, Ribeiro PL, Lambert S, Pirani JR (2008) A flora dos campos rupestres da Cadeia do Espinhaço. Megadiversidade 4:15–23Google Scholar
  156. Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301CrossRefGoogle Scholar
  157. Resende FM, Fernandes GW, Coelho MS (2013) Economic valuation of plant diversity storage service provided by Brazilian rupestrian grassland ecosystems. Braz J Biol 73:709–716PubMedCrossRefGoogle Scholar
  158. Rezende LAL, Dias LE, Assis IR, Braga R, Rezende ML (2013) Restoration of ironstones outcrops degraded by iron minning activity in Minas Gerais State—Brazil. J Am Soc Min Reclam 2:151–159CrossRefGoogle Scholar
  159. Rico-Gray V, Oliveira P (2007) The ecology and evolution of ant-plant interactions. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  160. Romero GQ, Mazzafera P, Vasconcellos-Neto J, Trivelin PC (2006) Bromeliad-living spiders improve host plant nutrition and growth. Ecology 87:803–808PubMedCrossRefGoogle Scholar
  161. Rull V (2004) Is the lost world really lost? Palaeoecological insights into the origin of the peculiar flora of the Guayana Highlands. Naturwissenschaften 91:139–142PubMedCrossRefGoogle Scholar
  162. Rull V (2005) Biotic diversification in the Guayana Highlands: a proposal. J Biogeogr 32:921–927CrossRefGoogle Scholar
  163. Rull V, Vegas-Vilarrúbia T (2006) Unexpected biodiversity loss under global warmingin the neotropical Guayana Highlands: a preliminaryappraisal. Glob Chang Biol 12:1–9Google Scholar
  164. Rylands AB, Brandon K (2005) Brazilian protected areas. Conserv Biol 19:612–618CrossRefGoogle Scholar
  165. Safford HD (2007) Brazilian Páramos IV. Phytogeography of the campos de altitude. J Biogeogr 17:1–22Google Scholar
  166. Salas RM, Viana PL, Cabral EL, Dessein S, Janssens S (2015) Carajasia (Rubiaceae), a new and endangered genus from Carajás mountain range, Pará, Brazil. Phytotaxa 206:14–29CrossRefGoogle Scholar
  167. Saravia ESR (2008) El costo de la conservación de los bosques tropicales. PhD Thesis, Universidad Autónoma G. René Moreno, Santa CruzGoogle Scholar
  168. Schaefer CEGR (2013) Bases físicas da paisagem brasileira: estrutura geológica, relevo e solos. Tópicos Ciência Solo 8:1–69Google Scholar
  169. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant Cell Environ 29:1989–1999PubMedCrossRefGoogle Scholar
  170. Silveira FAO, Mafia PO, Lemos-Filho JP, Fernandes GW (2012a) Species-specific outcomes of avian gut passage on germination of Melastomataceae seeds. Plant Ecol Evol 145:350–355CrossRefGoogle Scholar
  171. Silveira FAO, Ribeiro RC, Oliveira DMT, Fernandes GW, Lemos-Filho JP (2012b) Evolution of physiological dormancy multiple times in Melastomataceae from Neotropical montane vegetation. Seed Sci Res 22:37–44CrossRefGoogle Scholar
  172. Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci U S A 106:20359–20364PubMedPubMedCentralCrossRefGoogle Scholar
  173. Soares da Mota LAS, Garcia QS (2013) Germination patterns and ecological characteristics of Vellozia seeds from high-altitude in South-eastern Brazil. Seed Sci Res 23:67–74CrossRefGoogle Scholar
  174. Sonter LJ, Barrett DJ, Soares-Filho BS (2014) Offsetting the impacts of mining to achieve no net loss of native vegetation. Conserv Biol 28:1068–1076PubMedCrossRefGoogle Scholar
  175. Souza ER, Lewis GP, Forest F, Schnadelbach AS, van den Berg C, Queiroz LP (2013) Phylogeny of Calliandra (Leguminosae: Mimosoideae) based on nuclear and plastid molecular markers. Taxon 62:1200–1219CrossRefGoogle Scholar
  176. Stannard BL, Harvey YB, Harley RM (eds) (1995) Flora of the Pico das Almas, Chapada Diamantina—Bahia, Brazil. Kew Royal Botanic Gardens, LondonGoogle Scholar
  177. Teixeira WA, Lemos Filho JP (2013) A flórula rupestre do Pico de Itabirito, Minas Gerais, Brasil: lista das plantas vasculares. Bol Bot Univ São Paulo 31:199–230Google Scholar
  178. Teixeira WA, Lemos-Filho JP (2002) Fatores edáficos e a colonização de espécies lenhosas em uma cava de mineração de ferro em Itabirito, Minas Gerais. Rev Árvore 26:25–33Google Scholar
  179. Trovó M, Andrade MJG, Sano PT, Ribeiro PL, van den Berg C (2012) Molecular phylogenetics and biogeography of Neotropical Paepalanthoideae with emphasis on Brazilian Paepalanthus (Eriocaulaceae). Bot J Linn Soc 171:225–243CrossRefGoogle Scholar
  180. USDA (1998) Keys to soil taxonomy. United States Department of Agriculture, New YorkGoogle Scholar
  181. Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, Mahy G, Negreiros D, Overbeck GE, Veldman RG, Zaloumis NP, Putz FE, Bond WJ (2015) Toward an old-growth concept for grasslands, savannas, and woodlands. Front Ecol Environ 13:154–162CrossRefGoogle Scholar
  182. Veldtman R, McGeoch MA (2003) Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Austral Ecol 28:1–13CrossRefGoogle Scholar
  183. Velten SB, Garcia QS (2007) Variation between three Eremanthus (Asteraceae) species in their ability to form a seed bank. Rev Bras Bot 30:713–719CrossRefGoogle Scholar
  184. Versieux LM, Barbará T, Wanderley MGL, Calvente A, Fay MF, Lexer C (2012) Molecular phylogenetics of the Brazilian giant bromeliads (Alcantarea, Bromeliaceae): implications for morphological evolution and biogeography. Mol Phylogenet Evol 64:177–189PubMedCrossRefGoogle Scholar
  185. Vleeshouwers LM, Bouwmeester HJ, Karssen CM (1995) Redefining seed dormancy: an attempt to integrate physiology and ecology. J Ecol 86:1031–1037CrossRefGoogle Scholar
  186. WRB, IUSS Working Group (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  187. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827PubMedCrossRefGoogle Scholar
  188. Yates CJ, Coates DJ, Elliott C, Byrne M (2007) Composition of the pollinator community, pollination and the mating system for a shrub in fragments of species rich kwongan in south-west Western Australia. Biodivers Conserv 16:1379–1395CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fernando A. O. Silveira
    • 1
  • Daniel Negreiros
    • 2
  • Newton P. U. Barbosa
    • 2
  • Elise Buisson
    • 3
  • Flávio F. Carmo
    • 4
  • Daniel W. Carstensen
    • 5
  • Abel A. Conceição
    • 6
  • Tatiana G. Cornelissen
    • 7
  • Lívia Echternacht
    • 8
  • G. Wilson Fernandes
    • 2
    • 9
  • Queila S. Garcia
    • 1
  • Tadeu J. Guerra
    • 1
  • Claudia M. Jacobi
    • 2
  • José P. Lemos-Filho
    • 1
  • Soizig Le Stradic
    • 2
    • 3
    • 10
  • Leonor Patrícia C. Morellato
    • 5
  • Frederico S. Neves
    • 2
  • Rafael S. Oliveira
    • 11
    • 14
  • Carlos E. Schaefer
    • 12
  • Pedro L. Viana
    • 13
  • Hans Lambers
    • 14
  1. 1.Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Université d’Avignon et desPays de Vaucluse, Institut Méditerranéen de Biodiversité et d’Ecologie – UMR CNRS IRD Aix-Marseille UniversitéMarseilleFrance
  4. 4.Instituto PrístinoBelo HorizonteBrazil
  5. 5.Departamento de BotânicaUniversidade Estadual Paulista, UNESPAraraquaraBrazil
  6. 6.Departamento de Ciências BiológicasUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
  7. 7.Departamento de Ciências NaturaisUniversidade Federal de São João Del-ReiSão João del ReiBrazil
  8. 8.Departamento de BiologiaUniversidade Federal de UberlândiaUberlândiaBrazil
  9. 9.Department of BiologyStanford UniversityStanfordUSA
  10. 10.Gembloux Agro-Bio TechUniversité de LiègeLiègeBelgium
  11. 11.Departamento de Biologia VegetalUniversidade Estadual de CampinasCampinasBrazil
  12. 12.Departamento de SolosUniversidade Federal de ViçosaViçosaBrazil
  13. 13.Coordenação de Botânica, Museu Emílio GoeldiBelémBrazil
  14. 14.School of Plant BiologyUniversity of Western AustraliaPerthAustralia

Personalised recommendations