Plant and Soil

, Volume 397, Issue 1–2, pp 303–315 | Cite as

Mycorrhizal roots in a temperate forest take up organic nitrogen from 13C- and 15N-labeled organic matter

  • Matthew A. Vadeboncoeur
  • Andrew P. Ouimette
  • Erik A. Hobbie
Regular Article


Background and aims

The importance of the uptake of nitrogen in organic form by plants and mycorrhizal fungi has been demonstrated in various ecosystems including temperate forests. However, in previous experiments, isotopically labeled amino acids were often added to soils in concentrations that may be higher than those normally available to roots and mycorrhizal hyphae in situ, and these high concentrations could contribute to exaggerated uptake.


We used an experimental approach in which we added 13C-labeled and 15N-labeled whole cells to root-ingrowth cores, allowing proteolytic enzymes to release labeled organic nitrogen at a natural rate, as roots and their associated mycorrhizal fungi grew into the cores. We employed this method in four forest types representing a gradient of soil pH, nitrogen mineralization rate, and mycorrhizal type.


Intact uptake of organic nitrogen was detected in mycorrhizal roots, and accounted for at least of 1–14 % of labeled nitrogen uptake. Forest types did not differ significantly in the importance of organic uptake.


The estimates of organic N uptake made here using 13C-labeled and 15N-labeled whole cells are less than those reported in other temperate forest studies using isotopically labelled amino acids, and likely represent a minimum estimate of organic N-use. The two approaches each have different assumptions, and when used in tandem should complement one another and provide upper and lower bounds of organic N use by plants.


Organic nitrogen uptake Ingrowth core Dual label Temperate forest 



amino acid


dissolved organic nitrogen


fraction of N uptake in organic form



We thank R. Mixon, Z. McAvoy, N. Gagnon, and M. Day for assistance in the field and laboratory. J. Hobbie, S. Ollinger, A. Finzi, J. Aber, M. Ducey, J. Bryce, and two anonymous reviewrs provided thoughtful discussion on experimental design and helped to improve the manuscript. This work was funded by a Switzer Environmental Fellowship, a UNH Dissertation Year Fellowship, the NRESS graduate program, and NSF DEB0614266. We thank the UNH Office of Woodlands and Natural Areas, the Town of Strafford Conservation Commission, and the NH DRED Division of Forests and Lands for field site access.

Supplementary material

11104_2015_2623_MOESM1_ESM.pdf (199 kb)
ESM 1 (PDF 199 kb)


  1. Averill C, Finzi AC (2011) Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem δ15N. Ecology 92:883–891. doi: 10.1890/10-0746.1 CrossRefPubMedGoogle Scholar
  2. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545. doi: 10.1038/nature12901 CrossRefPubMedGoogle Scholar
  3. Blackburn TH, Knowles R (1992) Chapter 1. In: Paul EA, Knowles R, Melillo JM, Blackburn TH (eds) Nitrogen isotope techniques. Academic, San DiegoGoogle Scholar
  4. Brzostek ER, Finzi AC (2011) Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology 92:892–902. doi: 10.1890/10-1803.1 CrossRefPubMedGoogle Scholar
  5. Carlyle JC, Nambiar EKS (2001) Relationships between net nitrogen mineralization, properties of the forest floor and mineral soil, and wood production in Pinus radiata plantations. Can J For Res 31:889–898. doi: 10.1139/x01-008 CrossRefGoogle Scholar
  6. Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44. doi: 10.1111/j.1574-6976.1998.tb00359.x CrossRefPubMedGoogle Scholar
  7. Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266. doi: 10.1016/j.tplants.2006.04.005 CrossRefPubMedGoogle Scholar
  8. Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153. doi: 10.1038/361150a0 CrossRefGoogle Scholar
  9. Chapin FS, Neff JC, Vitousek PM (2003) Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ 1:205. doi: 10.2307/3868065 CrossRefGoogle Scholar
  10. Clark BR, Hartley SE, Suding KN, de Mazancourt C (2005) The effect of recycling on plant competitive hierarchies. Am Nat 165:609–622. doi: 10.1086/430074 CrossRefPubMedGoogle Scholar
  11. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560. doi: 10.1002/rcm.5129 CrossRefPubMedGoogle Scholar
  12. Federer CA, Turcotte DE, Smith CT (1993) The organic fraction - bulk density relationship and the expression of nutrient content in forest soils. Can J For Res 23:1026–1032. doi: 10.1139/x93-131 CrossRefGoogle Scholar
  13. Finzi AC, Berthrong ST (2005) The uptake of amino acids by microbes and trees in three cold-temperate forests. Ecology 86:3345–3353. doi: 10.1890/04-1460 CrossRefGoogle Scholar
  14. Gallet-Budynek A, Brzostek E, Rodgers VL et al (2009) Intact amino acid uptake by northern hardwood and conifer trees. Oecologia 160:129–138. doi: 10.1007/s00442-009-1284-2 CrossRefPubMedGoogle Scholar
  15. Govindarajulu M, Pfeffer PE, Jin H et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. doi: 10.1038/nature03610 CrossRefPubMedGoogle Scholar
  16. Harpole WS, Ngai JT, Cleland EE et al (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862. doi: 10.1111/j.1461-0248.2011.01651.x CrossRefPubMedGoogle Scholar
  17. Hill PW, Farrar J, Roberts P et al (2011a) Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat Clim Chang 1:50–53. doi: 10.1038/nclimate1060 CrossRefGoogle Scholar
  18. Hill PW, Quilliam RS, DeLuca TH et al (2011b) Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One 6, e19220. doi: 10.1371/journal.pone.0019220 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hobbie JE, Hobbie EA (2012) Amino acid cycling in plankton and soil microbes studied with radioisotopes: measured amino acids in soil do not reflect bioavailability. Biogeochemistry 107:339–360. doi: 10.1007/s10533-010-9556-9 CrossRefGoogle Scholar
  20. Hobbie JE, Hobbie EA (2013) Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates. Front Microbiol 4:324. doi: 10.3389/fmicb.2013.00324 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hobbie EA, Sánchez FS, Rygiewicz PT (2012) Controls of isotopic patterns in saprotrophic and ectomycorrhizal fungi. Soil Biol Biochem 48:60–68. doi: 10.1016/j.soilbio.2012.01.014 CrossRefGoogle Scholar
  22. Hobbie EA, Ouimette AP, Schuur EAG et al (2013) Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi. Biogeochemistry 114:381–389. doi: 10.1007/s10533-012-9779-z Google Scholar
  23. Högberg P, Högbom L, Schinkel H et al (1996) 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–214. doi: 10.1007/BF00334643 CrossRefGoogle Scholar
  24. Inselsbacher E, Näsholm T (2012) The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi. New Phytol 195:329–334. doi: 10.1111/j.1469-8137.2012.04169.x CrossRefPubMedGoogle Scholar
  25. Jacob A, Leuschner C (2015) Complementarity in the use of nitrogen forms in a temperate broad-leaved mixed forest. Plant Ecol Divers 8:243–258. doi: 10.1080/17550874.2014.898166 CrossRefGoogle Scholar
  26. Jin VL, Romanek CS, Donovan LA, Sharitz RR (2010) Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pinus palustris Mill in the southeastern US coastal plain. J Torrey Bot Soc 137:339–347. doi: 10.3159/10-RA-022.1 CrossRefGoogle Scholar
  27. Jin H, Liu J, Liu J, Huang X (2012) Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. Sci China Life Sci 55:474–482. doi: 10.1007/s11427-012-4330-y CrossRefPubMedGoogle Scholar
  28. Jones DL, Healey JR, Willett VB et al (2005a) Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biol Biochem 37:413–423. doi: 10.1016/j.soilbio.2004.08.008 CrossRefGoogle Scholar
  29. Jones DL, Shannon D, Junvee-Fortune T, Farrar JF (2005b) Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem 37:179–181. doi: 10.1016/j.soilbio.2004.07.021 CrossRefGoogle Scholar
  30. Kirkham D, Bartholomew W (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am J 18:33–34. doi: 10.2136/sssaj1954.03615995001800010009x CrossRefGoogle Scholar
  31. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103. doi: 10.1016/j.tree.2007.10.008 CrossRefPubMedGoogle Scholar
  32. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi: 10.1890/06-2057.1 CrossRefPubMedGoogle Scholar
  33. Lipson DA, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316. doi: 10.1007/s004420100693 CrossRefPubMedGoogle Scholar
  34. Lipson DA, Raab TK, Schmidt SK, Monson RK (1999) Variation in competitive abilities of plants and microbes for specific amino acids. Biol Fertil Soils 29:257–261. doi: 10.1007/s003740050550 CrossRefGoogle Scholar
  35. Mayor JR, Schuur EAG, Mack MC et al (2012) Nitrogen isotope patterns in Alaskan black spruce reflect organic nitrogen sources and the activity of ectomycorrhizal fungi. Ecosystems 15:819–831. doi: 10.1007/s10021-012-9548-9 CrossRefGoogle Scholar
  36. McKane RB, Johnson LC, Shaver GR et al (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71. doi: 10.1038/415068a CrossRefPubMedGoogle Scholar
  37. Näsholm T, Ekblad A, Nordin A et al (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916. doi: 10.1038/31921 CrossRefGoogle Scholar
  38. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48. doi: 10.1111/j.1469-8137.2008.02751.x CrossRefPubMedGoogle Scholar
  39. Newman GS, Arthur MA, Muller RN (2006) Above- and belowground net primary production in a temperate mixed deciduous forest. Ecosystems 9:317–329. doi: 10.1007/s10021-006-0015-3 CrossRefGoogle Scholar
  40. Orwin KH, Kirschbaum MUF, St. John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502. doi: 10.1111/j.1461-0248.2011.01611.x CrossRefPubMedGoogle Scholar
  41. Ouimette A, Guo D, Hobbie E, Gu J (2012) Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders. Plant Soil 367:313–326. doi: 10.1007/s11104-012-1464-4 CrossRefGoogle Scholar
  42. Pastor J, Aber JD, Mcclaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268. doi: 10.2307/1939478 CrossRefGoogle Scholar
  43. Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D et al (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci U S A 105:4524–4529. doi: 10.1073/pnas.0712078105 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Persson J, Högberg P, Ekblad A et al (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257. doi: 10.1007/s00442-003-1334-0 CrossRefPubMedGoogle Scholar
  45. Rothstein DE (2014) In-situ root uptake and soil transformations of glycine, glutamine and ammonium in two temperate deciduous forests of contrasting N availability. Soil Biol Biochem 75:233–236. doi: 10.1016/j.soilbio.2014.04.004 CrossRefGoogle Scholar
  46. Schimel JP, Chapin FS (1996) Tundra plant uptake of amino acid and NH4+ nitrogen in situ: plants complete well for amino acid N. Ecology 77:2142–2147. doi: 10.2307/2265708 CrossRefGoogle Scholar
  47. Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol 86:365–371CrossRefGoogle Scholar
  48. Vadeboncoeur MA (2010) Meta-analysis of fertilization experiments indicates multiple limiting nutrients in northeastern deciduous forests. Can J For Res 40:1766–1780. doi: 10.1139/X10-127 CrossRefGoogle Scholar
  49. Vadeboncoeur MA (2013) Mechanisms of nutrient limitation and nutrient acquisition in managed and unmanaged forest ecosystems. Ph.D. Dissertation. Univ. New Hampshire.
  50. Warren CR (2013) High diversity of soil organic N observed in soil water. Soil Biol Biochem 57:444–450. doi: 10.1016/j.soilbio.2012.09.025 CrossRefGoogle Scholar
  51. Whiteside MD, Digman MA, Gratton E, Treseder KK (2012) Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem 55:7–13. doi: 10.1016/j.soilbio.2012.06.001 CrossRefGoogle Scholar
  52. Wu T (2011) Can ectomycorrhizal fungi circumvent the nitrogen mineralization for plant nutrition in temperate forest ecosystems? Soil Biol Biochem 43:1109–1117. doi: 10.1016/j.soilbio.2011.02.003 CrossRefGoogle Scholar
  53. Wurzburger N, Hendrick RL (2009) Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest. J Ecol 97:528–536. doi: 10.1111/j.1365-2745.2009.01487.x CrossRefGoogle Scholar
  54. Xu X, Ouyang H, Kuzyakov Y et al (2006) Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China. Plant Soil 285:221–231. doi: 10.1007/s11104-006-9007-5 CrossRefGoogle Scholar
  55. Yanai RD, Levine CR, Green MB, Campbell JL (2012) Quantifying uncertainty in forest nutrient budgets. J For 110:448–456. doi: 10.5849/jof.11-087 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthew A. Vadeboncoeur
    • 1
  • Andrew P. Ouimette
    • 1
  • Erik A. Hobbie
    • 1
  1. 1.Earth Systems Research CenterUniversity of New HampshireDurhamUSA

Personalised recommendations