Plant and Soil

, Volume 394, Issue 1–2, pp 199–214 | Cite as

Water repellency of air-dried and sieved samples from limestone soils in central Portugal collected before and after prescribed fire

  • O. González-Pelayo
  • E. Gimeno-García
  • C. S. S. Ferreira
  • A. J. D. Ferreira
  • J. J. Keizer
  • V. Andreu
  • J. L. Rubio
Regular Article



Soil water repellency (SWR) in Mediterranean sub-humid environments is poorly studied in soils derived from basic bedrock. This study addressed this gap by comparing SWR in soil samples collected before/after a prescribed burning in a Mediterranean shrubland overlaying limestone.


Sampling was performed on two adjacent slopes (NE/SW) underneath Quercus coccifera, Pistacia lentiscus, Arbutus unedo shrubs, and on bare inter-patches, at two depths (0–2 and 2–5 cm). Samples were sieved at <0.25, 0.25–1, 1–2 and <2 mm and SWR was assessed through the Water Drop Penetration Time (WDPT) in each fraction. Samples were analysed for pH, AS, CaCO3 and SOM.


SWR was present before fire, mainly in the <0.25 and 0.25–1 mm fractions at 0–2 cm, which could be explained by SOM (amount and chemical composition). Persistence varied between the two slopes (NE > SW) and the four patches (Arbutus unedo > Pistacia lentiscus ≈ Quercus coccifera > Bare). The low-severity fire slightly increased SWR but did not affect the above-mentioned pre-fire differences.


The wax and resins from different shrub species have implications for SWR persistence on the finer soil fractions. Prescribed fire increased the severity of SWR at surface but also its frequency at the subsurface layer.


Soil water repellency Soil fractions Texture Plant-/inter-patches Mediterranean Shrubland Prescribed fire 



Soil water repellency


Soil moisture content


Water drop penetration time


Soil organic matter








Thermo-sensitive paints


Aggregate stability


Carbonate content



The authors are grateful for the financial support from Agreement Generalitat Valenciana-CSIC in CIDE (2005020112) “Impacto de los incendios forestales repetidos sobre los procesos de erosión hídrica del suelo y la recuperación de la cubierta vegetal. Seguimiento y evaluación en una estación permanente de campo”. We also thank to CERNAS (in Escola Superior Agrária de Coimbra) and CESAM (in University of Aveiro) for the technical support performed through the DESIRE project (FP6-2005-Global-4. Combat land degradation and Desertification). People involved in floristic/soil surveys were Pedro Bingre de Amaral, Marta López, Erica Castanheira, Manuela Carreiras, Tanya Esteves, Celia Bento, Vitor Tomé and Simon Drooger. The main author also thanks to Ana Vasques, Bruno Moreira, Maruxa Malvar, Sergio Prats, and the anonymous referees for their useful comments that mostly improved this manuscript. Acknowledgements are extended to the FLOPEN forestry association, headed by Ing. João Ribeiro, for the prescribed fire management.


  1. Andreu V, Imeson AC, Rubio JL (2001) Temporal changes in soil aggregates and water erosion after a wildfire in Mediterranean pine forest. Catena 44:69–84CrossRefGoogle Scholar
  2. Arcenegui V, Mataix-Solera J, Guerrero C, Zornoza R, Mayoral AM, Morales J (2007) Factors controlling the water repellency induced by fire in calcareous mediterranean forest soils. Eur J Soil Sci 58:1254–1259CrossRefGoogle Scholar
  3. Arcenegui V, Mataix-Solera J, Guerrero C, Zornoza R, Mataix-Beneyto J, García-Orenes F (2008) Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena 74:219–226CrossRefGoogle Scholar
  4. Bisdom EBA, Dekker LW, Schoute JFT (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 56:105–118CrossRefGoogle Scholar
  5. Bochet E, García-Fayos P, Alborch B, Tormo J (2007) Soil water availability effects on seed germination account for species segregation in semiarid roadslopes. Plant Soil 295:179–191CrossRefGoogle Scholar
  6. Bodí MB, Muñoz-Santa I, Armero C, Doerr SH, Mataix-Solera J, Cerdà A (2013) Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena 108:14–25CrossRefGoogle Scholar
  7. Bodí MB, Martin DA, Balfourd VN, Santín C, Doerr SH, Pereira P, Cerdà A, Mataix-Solera J (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci Rev 130:103–127CrossRefGoogle Scholar
  8. Boix-Fayos C, Calvo-Cases A, Imeson AC, Soriano-Soto MD (2001) Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44:47–67CrossRefGoogle Scholar
  9. Campo J, Gimeno-García E, Andreu V, González-Pelayo O, Rubio JL (2008) Aggregation of under canopy and bare soils in a Mediterranean environment affected by different fire intensities. Catena 74(3):212–218CrossRefGoogle Scholar
  10. Campo J, Nierop KGJ, Cammeraat E, Andreu V, Rubio JL (2011) Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro- and microaggregates of a Mediterranean soil upon heating. J Chromatogr A 1218:4817–4827CrossRefPubMedGoogle Scholar
  11. Campo J, Gimeno-García E, Andreu V, González-Pelayo O, Rubio JL (2014) Cementing agents involved in the macro- and microaggregation of a Mediterranean shrubland soil under laboratory heating. Catena 113:165–176CrossRefGoogle Scholar
  12. Cerdà A (1998) Soil aggregate stability under different Mediterranean vegetation types. Catena 32(2):73–86CrossRefGoogle Scholar
  13. Cerdà A, Doerr SH (2007) Soil wettability, runoff and erodibility of major dry-mediterranean land use types on calcareous soils. Hydrol Process 21:2325–2336CrossRefGoogle Scholar
  14. De Blas E, Rodríguez-Alleres M, Almendros G (2010) Speciation of lipid and humic fractions in soils under pine and eucalyptus forest in northwest Spain and its effect on water repellency. Geoderma 155:242–248CrossRefGoogle Scholar
  15. Dekker LW, Ritsema CJ (1994) How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resour Res 30:2507–2517CrossRefGoogle Scholar
  16. Dlapa P, Bodí MB, Mataix-Solera J, Cerdà A, Doerr SH (2013) FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena 108:35–43CrossRefGoogle Scholar
  17. Doerr SH, Thomas AD (2000) The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. J Hydrol 231–232:134–147CrossRefGoogle Scholar
  18. Doerr SH, Shakesby RA, Walsh RPC (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51:33–65CrossRefGoogle Scholar
  19. Doerr SH, Dekker LW, Shakesby RA, Ritsema CJ, Bryant R (2002) Water repellency of soils: the influence of ambient relative humidity. Soil Sci Soc Am J 66:401–405CrossRefGoogle Scholar
  20. Doerr SH, Douglas RC, Morley CP, Mullinger NJ, Bryant R, Shakesby RA (2005) Effects of heating and post-heating equilibration times on soil water repellency. Aust J Soil Res 43:261–267CrossRefGoogle Scholar
  21. Fernandes PM, Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildland Fire 12:117–128CrossRefGoogle Scholar
  22. Gimeno-García E, Andreu V, Rubio JL (2004) Spatial patterns of soil temperatures during experimental fires. Geoderma 118:17–38CrossRefGoogle Scholar
  23. Gimeno-García E, Pascual JA, Llovet J (2011) Water repellency and moisture spatial variations under Rosmarinus officinalis and Quercus coccifera in a Mediterranean burned soil. Catena 85:48–77CrossRefGoogle Scholar
  24. González-Pelayo O, Andreu V, Gimeno-García E, Campo J, Rubio JL (2010a) Effects of fire and vegetation cover on hydrological characteristics of a Mediterranean shrubland soil. Hydrol Process 24:1504–1513CrossRefGoogle Scholar
  25. González-Pelayo O, Andreu V, Gimeno-García E, Campo J, Rubio JL (2010b) Rainfall influence on plot-scale runoff and soil loss from repeated burning in a Mediterranean-shrub ecosystem, Valencia, Spain. Geomorphology 118:444–452CrossRefGoogle Scholar
  26. González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30(6):855–870CrossRefPubMedGoogle Scholar
  27. Hubbert KR, Preisler HK, Wohlgemuth PM, Graham RC, Narog MG (2006) Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA. Geoderma 130:284–298CrossRefGoogle Scholar
  28. Imeson AC, Verstraten JM, van Mulligen EJ, Sevink J (1992) The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena 19:345–361CrossRefGoogle Scholar
  29. IUSS Working Group WRB (2014) World Reference Base for Soil Resources (2014) International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  30. Jackson ML (1958) Soil chemical analysis. Prentice Hall Inc, LondonGoogle Scholar
  31. Johansen MP, Hakonson TE, Whicker FW, Breshears DD (2003) Pulsed redistribution of a contaminant following forest fire. J Environ Qual 32:2150–2157PubMedGoogle Scholar
  32. Jordán A, Martínez-Zavala L, Bellinfante N (2008) Heterogeneity in soil hydrological response from different land cover types in southern Spain. Catena 74:137–143CrossRefGoogle Scholar
  33. Kawamoto K, Moldrup P, Komatsu T, de Jonge LW, Oda M (2007) Water repellency of aggregate size fractions of a volcanic ash soil. Soil Sci Soc Am 71(6):1658–1666CrossRefGoogle Scholar
  34. Letey J (2001) Causes and consequences of fire-induced soil water repellency. Hydrol Process 15:2867–2875CrossRefGoogle Scholar
  35. Lozano E, Jiménez-Pinilla P, Mataix-Solera J, Arcenegui V, Bárcenas GM, González-Pérez JA, García-Orenes F, Torres MP, Mataix-Beneyto J (2013) Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma 207–208:212–220CrossRefGoogle Scholar
  36. Maia P, Pausas JG, Arcenegui V, Guerrero C, Pérez-Bejarano A, Mataix-Solera J, Varela MET, Fernandes I, Pedrosa ET, Keizer JJ (2012) Wildfire effects on the soil seed bank of a maritime pine stand—the importance of fire severity. Geoderma 191:80–88CrossRefGoogle Scholar
  37. Malkinson D, Wittenberg L (2011) Post fire induced soil water repellency-modeling short and long-term processes. Geomorphology 125(1):186–192CrossRefGoogle Scholar
  38. MAPA (1986) Métodos oficiales de análisis (suelos). Ministerio de Agricultura, Pesca y Alimentación. Madrid, 531Google Scholar
  39. Martínez-Murillo JF, Gabarrón-Galeote MA, Ruiz-Sinagoga JD (2013) Soil water repellency in Mediterranean rangelands under contrasted climatic, slope and patch conditions in southern Spain. Catena 110:196–206CrossRefGoogle Scholar
  40. Martínez-Zavala L, Jordán-López A (2009) Influence of different plant species on water repellency in mediterranean heatland soils. Catena 76:215–223CrossRefGoogle Scholar
  41. Mataix-Solera J, Doerr SH (2004) Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forest in southeastern Spain. Geoderma 118:77–88CrossRefGoogle Scholar
  42. Mataix-Solera J, Arcenegui V, Guerrero C, Mayoral AM, Morales J, González J, García-Orenes F, Gómez I (2007) Water repellency under different plant species in a calcareous forest soil in a semiarid mediterranean environment. Hydrol Process 21:2300–2309CrossRefGoogle Scholar
  43. Mataix-Solera J, Arcenegui V, Tessler N, Zornoza R, Wittenberg L, Martínez C, Caselles P, Pérez-Bejarano A, Malkinson D, Jordán MM (2013) Soil properties as key factors controlling water repellency in fire-affected areas: evidences from burned sites in Spain and Israel. Catena 108:6–13CrossRefGoogle Scholar
  44. Mazzoleni S, Bonanomi G, Giannino F, Incerti G, Dekker SC, Rietkerk M (2010) Modelling the effects of litter decomposition on tree diversity patterns. Ecol Model 221:2784–2792CrossRefGoogle Scholar
  45. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677CrossRefGoogle Scholar
  46. Paula S, Pausas JG (2008) Burning seeds: germinative response to heat treatments in relation to resprouting ability. J Ecol 96:543–552CrossRefGoogle Scholar
  47. Prats SA, MacDonald LH, Monteiro M, Ferreira AJD, Coelho COA, Keizer JJ (2012) Effectiveness of forest residue mulching in reducing post-fire runoff and erosion in a pine and a eucalypt plantation in north-central Portugal. Geoderma 191:115–124CrossRefGoogle Scholar
  48. Primo-Yufera E, Carrasco JM (1973) Química Agrícola I. Suelos y Fertilizantes. Alhambra, MadridGoogle Scholar
  49. Regalado CM, Ritter A (2005) Characterizing water dependent soil repellency with minimal parameter requirement. Soil Sci Soc Am 69(6):1955–1966CrossRefGoogle Scholar
  50. Robichaud PR, Hungerford RD (2000) Water repellency by laboratory burning of four northern Rocky mountain forest soils. J Hydrol 231–232:207–219CrossRefGoogle Scholar
  51. Rotondi A, Rossi F, Asunis C, Cesaraccio C (2003) Leaf xeromorphic adaptations of some plants of coastal Mediterranean macchia ecosystem. J Mediterr Ecol 4(3-4):25–35Google Scholar
  52. Roy JL, McGill WB (2000) Flexible conformation in organic matter coatings: an hypothesis about soil water repellence. Can J Soil Sci 80:143–152CrossRefGoogle Scholar
  53. Santos JM, Verheijen FGA, Wahren FT, Wahren A, Feger KH, Bernard-Jannin L, Rial-Rivas ME, Keizer JJ, Nunes JP (2013) Soil water repellency dynamics in pine and eucalypt plantations in Portugal—a high resolution time series. Land Degrad Dev. doi: 10.1002/ldr.2251 Google Scholar
  54. Shakesby RA, Bento CPM, Ferreira CSS, Ferreira AJD, Stoof CR, Urbanek E, Walsh RPD (2015) Impacts of prescribed fire on soil loss and soil quality: an assessment based on an experimentally-burned catchment in central Portugal. Catena 128:278–293CrossRefGoogle Scholar
  55. Stoof CR, Moore D, Ritsema CJ, Dekker LW (2011) Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Sci Soc Am J 75(6):2283–2295CrossRefGoogle Scholar
  56. Stoof CR, Moore D, Fernandes PM, Stoorvogel JJ, Fernandes RES, Ferreira AJD, Ritsema CJ (2013) Hot fire, cool soil. Geophys Res Lett 40:1–6CrossRefGoogle Scholar
  57. Tessler N, Wittenberg L, Malkinson D, Greenbaum N (2008) Fire effects and short-term changes in soil water repellency—Mt. Carmel, Israel. Catena 74:185–191CrossRefGoogle Scholar
  58. Úbeda X, Lorca M, Outeiro LR, Bernia S, Castellnou M (2005) Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). Int J Wildland Fire 14:379–384CrossRefGoogle Scholar
  59. Vadilonga T, Úbeda X, Germann PF, Lorca M (2008) Effects of prescribed burnings on soil hydrological parameters. Hydrol Process 22:4249–4256CrossRefGoogle Scholar
  60. Valette J, Gomendi V, Marechal J, Houssard C, Guillon D (1994) Heat transfer in the soil during very low-intensity experimental fires: the role of duff and soil moisture content. Int J Wildland Fire 4(4):225–237CrossRefGoogle Scholar
  61. Verheijen FGA, Cammeraat LH (2007) The association between three dominant shrub species and water repellent soil, along a range of soil moisture contents in semi-arid Spain. Hydrol Process 21:2310–2316CrossRefGoogle Scholar
  62. Vilén T, Fernandes PM (2011) Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning. Environ Manag 48:558–567CrossRefGoogle Scholar
  63. Zavala LM, Granged AJP, Jordán A, Bárcenas-Moreno G (2010) Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma 158:366–374CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • O. González-Pelayo
    • 1
    • 2
  • E. Gimeno-García
    • 1
    • 4
  • C. S. S. Ferreira
    • 2
    • 3
  • A. J. D. Ferreira
    • 3
  • J. J. Keizer
    • 2
  • V. Andreu
    • 1
  • J. L. Rubio
    • 1
  1. 1.CIDE, Centro de Investigaciones Sobre Desertificación (CSIC-Universitat de València, Generalitat Valenciana)MoncadaSpain
  2. 2.CESAM, Centro de Estudos do Ambiente e do Mar. Departamento de Ambiente e OrdenamentoUniversidade de AveiroAveiroPortugal
  3. 3.CERNAS, Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Escola Superior Agrária de CoimbraBencantaPortugal
  4. 4.Fundació General Universitat de ValènciaValenciaSpain

Personalised recommendations