Advertisement

Plant and Soil

, Volume 393, Issue 1–2, pp 207–214 | Cite as

Soil biodegradation of a benzoxazinone analog proposed as a natural products-based herbicide

  • Nuria Chinchilla
  • David Marín
  • Alberto Oliveros-Bastidas
  • José M. G. Molinillo
  • Francisco A. MacíasEmail author
Regular Article

Abstract

Aims

Benzoxazinones with the 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one skeleton have been proposed as potentially successful models for the development of novel design leads. D-DIBOA has proven to be the most promising base structure in the search for novel herbicide models based on the benzoxazinone skeleton. The biodegradation dynamics of D-DIBOA in soil are therefore relevant and are the subject of this study.

Methods

A previously optimized methodology for the assessment of biodegradation has been applied for the first time to a synthetic benzoxazinone.

Results

Biodegradability is a characteristic of natural benzoxazinones and a safety requirement for the development of herbicidal chemicals. The biodegradation phenomenon and its consequences for the development of new herbicide models are discussed. The half-life determined for D-DIBOA was much higher than those previously reported for the natural products DIBOA, DIMBOA and their benzoxazolinone derivatives.

Conclusions

This finding, together with its previously described potent phytotoxicity, suggests that D-DIBOA is a useful candidate for novel herbicide model development. The lactam D-HBOA, which is slightly less phytotoxic than its precursor, was discovered to be the first and principal metabolite resulting from D-DIBOA degradation.

Keywords

D-DIBOA Benzoxazinones Degradation study Soil Herbicide models 

Notes

Acknowledgments

This research was supported by the Ministerio de Economía y Competitividad (MINECO), Spain (Project AGL2013-42238-R) and Consejería de Innovación, Ciencia e Industria, Junta de Andalucía, Spain (Project DP12-TEP-725).

Conflict of interest

The authors declare no conflict of interest associated with this manuscript.

References

  1. Argandoña VH, Corcuera LJ, Niemeyer HM, Campbell BC (1983) Toxicity and feeding deterrency of hydroxamic acids from Gramineae in synthetic diets against the greenbug, Schizaphis graminum. Entomol Exp Appl 34:134–138CrossRefGoogle Scholar
  2. Barnes JP, Putnam AR (1987) Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J Chem Ecol 13:889–906PubMedCrossRefGoogle Scholar
  3. Bravo HR, Lazo W (1996) Antialgal and antifungal activity of natural hydroxamic acids and related compounds. J Agric Food Chem 44:1569–1571CrossRefGoogle Scholar
  4. Cipollini D, Rigsby CM, Barto EK (2012) Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 38:714–727PubMedCrossRefGoogle Scholar
  5. Dayan FE, Owens DK, Duke SO (2012) Rationale for a natural products approach to herbicide discovery. Pest Manag Sci 68:519–528PubMedCrossRefGoogle Scholar
  6. Eljarrat E, Guillamon M, Seuma J, Mogensen BB, Fomsgaard IS, Olivero-Bastidas A, Macias FA, Stochmal A, Oleszek W, Shakaliene O, Barcelo D (2004) First European interlaboratory study of the analysis of benzoxazinone derivatives in plants by liquid chromatography. J Chromatogr A 1047:69–76PubMedCrossRefGoogle Scholar
  7. Fomsgaard IS, Mortensen AG, Carlsen SCK (2004) Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals: a review. Chemosphere 54:1025–1038PubMedCrossRefGoogle Scholar
  8. Gerwick BC, Sparks TC (2014) Natural products for pest control: an analysis of their role, value and future. Pest Manag Sci 70:1169–1185PubMedCrossRefGoogle Scholar
  9. Macias FA, Oliveros-Bastidas A, Marin D, Castellano D, Simonet AM, Molinillo JMG (2004) Degradation studies on benzoxazinoids. Soil degradation dynamics of 2,4-dihydroxy-7-methoxy-(2 h)-1,4-benzoxazin-3(4 h)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from gramineae. J Agric Food Chem 52:6402–6413PubMedCrossRefGoogle Scholar
  10. Macias FA, Chinchilla N, Varela RM, Oliveros-Bastidas A, Marin D, Molinillo JMG (2005a) Structure-activity relationship studies of benzoxazinones and related compounds. Phytotoxicity on Echinochloa crus-galli (L.) P. Beauv. J Agric Food Chem 53:4373–4380PubMedCrossRefGoogle Scholar
  11. Macias FA, Marin D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JMG (2005b) Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on standard target species (STS). J Agric Food Chem 53:538–548PubMedCrossRefGoogle Scholar
  12. Macias FA, Oliveros-Bastidas A, Marin D, Castellano D, Simonet AM, Molinillo JMG (2005c) Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-β-D-glucopyranosyl-4-hydroxy-(2H)- 1,4-benzoxazin-3(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J Agric Food Chem 53:554–561PubMedCrossRefGoogle Scholar
  13. Macias FA, De SJM, Chinchilla N, Marin D, Varela RM, Molinillo JMG (2006a) New herbicide models from benzoxazinones: aromatic ring functionalization effects. J Agric Food Chem 54:9843–9851PubMedCrossRefGoogle Scholar
  14. Macias FA, Marin D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JMG (2006b) Structure-activity relationship (SAR) studies of benzoxazinones, their degradation products, and analogues. Phytotoxicity on problematic weeds Avena fatua L. and Lolium rigidum Gaud. J Agric Food Chem 54:1040–1048PubMedCrossRefGoogle Scholar
  15. Macias FA, Marin D, Oliveros-Bastidas A, Chinchilla D, Simonet AM, Molinillo JMG (2006c) Isolation and synthesis of allelochemicals from gramineae: benzoxazinones and related compounds. J Agric Food Chem 54:991–1000PubMedCrossRefGoogle Scholar
  16. Macias FA, Marin D, Oliveros-Bastidas A, Molinillo JMG (2006d) Optimization of benzoxazinones as natural herbicide models by lipophilicity enhancement. J Agric Food Chem 54:9357–9365PubMedCrossRefGoogle Scholar
  17. Macías FA, Marin D, Oliveros-Bastidas A, Simonet AM, Molinillo JMG (2007) Ecological relevance of the degradation processes of allelochemicals. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts & methodology. Science Publishers Inc, Enfield, pp 91–107Google Scholar
  18. Macías FA, Chinchilla N, Varela RM, Molinillo JMG, Marín D, De Siqueira JM (2008) Modified benzoxazinones in the system Oryza sativa-Echinochloa crus-galli: an approach to the development of biorational herbicide models. J Agric Food Chem 56:9941–9948PubMedCrossRefGoogle Scholar
  19. Macias FA, Chinchilla N, Varela RM, Molinillo JMG, Marin D, de Siqueira JM (2009) Aromatic-ring-functionalised benzoxazinones in the system Oryza sativa-Echinochloa crus-galli as biorational herbicide models. Pest Manag Sci 65:1104–1113PubMedCrossRefGoogle Scholar
  20. Macias FA, Chinchilla N, Arroyo E, Molinillo JMG, Marin D, Varela RM (2010) Combined strategy for phytotoxicity enhancement of benzoxazinones. J Agric Food Chem 58:2047–2053PubMedCrossRefGoogle Scholar
  21. Macías FA, Chinchilla N, Arroyo E, Varela RM, Molinillo JMG, Marín D (2010) Multifunctionalised benzoxazinones in the systems Oryza sativa-echinochloa crus-galli and Triticum aestivum-Avena fatua as natural-product-based herbicide leads. Pest Manag Sci 66:1137–1147PubMedCrossRefGoogle Scholar
  22. Macias FA, Oliveros-Bastidas A, Marin D, Chinchilla N, Castellano D, Molinillo JMG (2014) Evidence for an allelopathic interaction between rye and wild oats. J Agric Food Chem 62:9450–9457PubMedCrossRefGoogle Scholar
  23. Meier U (1997) Growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin; BostonGoogle Scholar
  24. Oliveros-Bastidas A (2006) Allelopathic studies on Gramineae. Benzoxazinoids as allelochemicals. PhD Degree, University of CádizGoogle Scholar
  25. Oliveros-Bastidas AJ, Macias FA, Marin D, Carrera-Fernandez CA, Molinillo JMG (2009) Decomposition of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA), an allelochemical of grasses. Consequences for measurements of biological activity. Quimica no Brasil 3:53–60Google Scholar
  26. Oliveros-Bastidas A, Macias FA, Marin D, Molinillo JMG, Barbosa LCA, Demuner AJ (2012) Kinetics and mechanism of the degradation in soil of 2-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (HBOA), phytotoxic allelochemicals from gramineae. Av cien ing 3:47–67Google Scholar
  27. Perez FJ, Ormeno-Nunez J (1991) Difference in hydroxamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): possible role in allelopathy. J Chem Ecol 17:1037–1043PubMedCrossRefGoogle Scholar
  28. Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JMG (2013) Benzoxazinoids in rye allelopathy—from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154–174PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nuria Chinchilla
    • 1
  • David Marín
    • 1
  • Alberto Oliveros-Bastidas
    • 1
  • José M. G. Molinillo
    • 1
  • Francisco A. Macías
    • 1
    Email author
  1. 1.Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO)University of CadizCádizSpain

Personalised recommendations