Advertisement

Plant and Soil

, Volume 393, Issue 1–2, pp 177–191 | Cite as

Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines)

  • T. Klotzbücher
  • F. Leuther
  • A. Marxen
  • D. Vetterlein
  • F. G. Horgan
  • R. Jahn
Regular Article

Abstract

Background and aims

Silicon (Si) is beneficial for rice plants. It increases their resistance against pests and diseases. Although Si uptake of rice crops is often higher than nitrogen uptake, studies on forms and fluxes of plant-available Si in paddy systems are scarce.

Methods

In 2011/12 we assessed acetate-, oxalate-, and carbonate-extractable Si in topsoil (i.e., Si forms that contribute to the pool of ‘readily soluble Si’) and related them to plant-Si-uptake (n = 10 paddies; Laguna region; Philippines). In the wet season 2013, we determined changes in (i) plant-Si-uptake, (ii) dissolved Si (dSi) and (iii) acetate-extractable Si in topsoils in a high temporal resolution (n = 5 paddies, every ~10 days), and assessed dSi fluxes via irrigation, rain, drainage and percolation (n = 3 paddies).

Results

Si storage in plants at harvest was 0.73 ± 0.12 Mg ha−1 (>78 % in straw), and not related to different Si forms in topsoils. Large stocks of carbonate-extractable Si (2–29 Mg ha−1) suggest an accumulation of ‘phytoliths’ (amorphous Si oxides in straw) in topsoil due to irrigation. Acetate-extractable Si in topsoils hardly changed during plant growth, suggesting dSi and absorded Si was continuously contributed by irrigation and phytolith dissolution.

Conclusions

Geo-/pedologic conditions, irrigation, and straw management are major determinants on Si storage and fluxes in irrigated rice paddies.

Keywords

Silicon Rice Paddy fields Philippines Water management Straw management 

Notes

Acknowledgments

This work has been partially sponsored by the LEGATO project of the German Ministry for Research and Education (BMBF) and by the Global Rice Science Partnership (management of the IRRI site). We thank Josef Settele for coordinating the LEGATO project. Angelee Fame Ramal managed the IRRI site. Antonio Salamation helped during the paddy work. We thank Alexandra Boritzki, Claudia Hoffmann-Jäniche, Andreas Rämmler, Jutta Fröhlich, Aleksey Prays and Susanne Horka for the help in the laboratory, Sylvia Villareal for the help with the sample transport, and Klaus Kaiser for valuable comments on the manuscript. We furthermore thank the two anonymous reviewers for their helpful comments and suggestions on the manuscript.

References

  1. Alvarez J, Datnoff LE (2001) The economic potential of silicon for integrated management and sustainable rice production. Crop Prot 20:43–48CrossRefGoogle Scholar
  2. Barbosa-Filho MP, Snyder GH, Elliott CL, Datnoff LE (2001) Evaluation of soil test procedures for determining plant-available silicon. Commun Soil Sci Plant Anal 32:1779–1792CrossRefGoogle Scholar
  3. Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Sci Soc Am J 44:873–878CrossRefGoogle Scholar
  4. Belder P, Bouman BAM, Cabangon R, Quilang EJP, Yuanhua L, Spietz JHJ, Tuong TP (2004) Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manag 65:193–210CrossRefGoogle Scholar
  5. Bouman BAM, Lampayan RM, Toung TP (2007) Water management in irrigated rice: coping with water scarcity. International Rice Research Institute, Los BanosGoogle Scholar
  6. Cornelis J-T, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378CrossRefGoogle Scholar
  7. de Lima Rodriguez L, Daroub SH, Rice RW, Snyder GH (2003) Comparison of three soil test methods for estimating plant-available silicon. Commun Soil Sci Plant Anal 34:2059–2071CrossRefGoogle Scholar
  8. DeMaster DJ (1981) The supply and accumulation of silica in the marine environments. Geochim Cosmochim Acta 45:1715–1732CrossRefGoogle Scholar
  9. Desplanques V, Cary L, Mouret J-C, Trolard F, Bourrié G, Grauby O, Meunier JD (2006) Silicon transfers in a rice field in Camargue (France). J Geochem Explor 88:190–193CrossRefGoogle Scholar
  10. Dobermann A, Fairhurst TH (2000) Rice: nutrient disorders and nutrient management. International Rice Research Institute, Los BanosGoogle Scholar
  11. Deutsches Institut für Normung (2002) Bodenbeschaffenheit - Bestimmung der Partikelgrößenverteilung in Mineralböden - Verfahren mittels Siebung und Sedimentation. ISO 11277:1998 + ISO 11277:1998 Corrigendum 1:2002, Beuth-Verlag, Berlin, GermanyGoogle Scholar
  12. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160CrossRefGoogle Scholar
  13. FAO (2014) FAO training series- simple methods for aquaculture. ftp://ftp.fao.org/fi/CDrom/FAO_training/FAO_training/general/x6705e/Index.htm. Accessed 29 September 2014
  14. Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206CrossRefGoogle Scholar
  15. Guntzer F, Keller C, Meunier J-D (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213CrossRefGoogle Scholar
  16. Imaizumi K, Yoshida S (1958) Edaphological studies on the silicon supplying power of paddy soils. Bull Natl Inst Agric Sci (Jpn) B 8:261–304Google Scholar
  17. IUSS Working Group WRB (2014) World reference base for soil resources 2014. World Soil Resources Reports No. 106. Food and Agriculture Organization, RomeGoogle Scholar
  18. Klotzbücher T, Marxen A, Vetterlein D, Schneiker J, Türke M, Sinh NV, Manh NH, Chien HV, Marquez L, Villareal S, Bustamante JV, Jahn R (2014) Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl Ecol. doi: 10.1016/j.baae.2014.08.002 Google Scholar
  19. Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14CrossRefGoogle Scholar
  20. Koning E, Epping E, van Raaphorst W (2002) Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions. Aquat Geochem 8:37–67CrossRefGoogle Scholar
  21. Liu Z, Zhao Y, Colin C, Siringan FP, Wu Q (2009) Chemical weathering in Luzon, Philippines from clay mineralogy and major element geochemistry of river sediments. Appl Geochem 24:2195–2205Google Scholar
  22. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  23. Ma JF, Miyake Y, Takahshi E (2001) Silicon as a beneficial element for crop plants. In: LE Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 17–39CrossRefGoogle Scholar
  24. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691PubMedCrossRefGoogle Scholar
  25. Narayanaswamy C, Prakash NB (2010) Evaluation of selected extractants for plant-available silicon in rice soils of Southern India. Commun Soil Sci Plan 41:977–989CrossRefGoogle Scholar
  26. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473CrossRefGoogle Scholar
  27. Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 6:1446–1459CrossRefGoogle Scholar
  28. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108CrossRefGoogle Scholar
  29. Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z Pflanzenernahr Dung Bodenkd 105:194–202CrossRefGoogle Scholar
  30. Seyfferth AL, Kocar BD, Lee JA, Fendorf S (2013) Seasonal dynamics of dissolved silicon in a rice cropping system after straw incorporation. Geochim Cosmochim Acta 123:120–133CrossRefGoogle Scholar
  31. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes- a review. J Plant Nutr Soil Sci 169:310–329CrossRefGoogle Scholar
  32. Struyf E, Damme Van S, Gribsholt B, Middelburg JJ, Meire P (2005) Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium). Mar Ecol Prog Ser 303:51–60Google Scholar
  33. Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) The global biogeochemical silicon cycle. Silicon 1:207–213CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • T. Klotzbücher
    • 1
  • F. Leuther
    • 1
  • A. Marxen
    • 2
  • D. Vetterlein
    • 2
  • F. G. Horgan
    • 3
  • R. Jahn
    • 1
  1. 1.Institute of Agricultural and Nutritional Sciences – Soil ScienceUniversity of HalleHalle (Saale)Germany
  2. 2.Department of Soil PhysicsHelmholtz Centre for Environmental Research GmbH - UFZHalle (Saale)Germany
  3. 3.International Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations