Plant and Soil

, Volume 392, Issue 1–2, pp 155–162 | Cite as

Grazing increases below-ground biomass and net primary production in a temperate grassland

  • Luis López-Mársico
  • Alice Altesor
  • Mariano Oyarzabal
  • Pablo Baldassini
  • José M. Paruelo
Regular Article


Background and aims

Grazing can affect the stock and flow of C between above and below-ground vegetation layers. Components of below-ground stratum are one of the less studied. The goals of this research were: 1) to characterize and estimate the vertical distribution of below-ground biomass in grazed and ungrazed areas during a growing season, and 2) to evaluate grazing effects on below-ground net primary production (BNPP).


Below-ground biomass was cored four times to 100 cm depth during a growing season on three paired grazed-ungrazed areas in South-central Uruguayan grasslands. BNPP was estimated using both field data and CENTURY model.


On average, below-ground biomass was higher in grazed (1417 gm−2) than in ungrazed areas (945 gm−2) and showed a marked reduction in relation with soil depth. Turnover rates were 0.40 and 0.37 years−1 in grazed and ungrazed areas respectively. Field data and CENTURY simulation showed higher BNPP in grazed areas (1.86; 0.77 gm−2days−1 respectively) than in ungrazed areas (1.07; 0.67 gm−2days−1 respectively).


Grazed areas showed higher below-ground biomass, BNPP and turnover that ungrazed areas. Grazing has an important role in regulating both stock and dynamics of C in grassland ecosystems.


C sequestration Grazed-ungrazed Root distribution Soil cores CENTURY model Uruguay 



We particularly appreciate the assistance in the field work of G. Fernández, F. Gallego, S. Baeza, C. Bagnato, B. Costa, A. Guido, E. Leoni, F. Lezama, A.L. Mello, G. Parodi and F. Pezzani, and we thank Andrea Geymonat and Andrea Corona for technical assistance. We thank G. Piñeiro and two anonymous reviewers for useful comments on the manuscript. We thank the owners of “El Relincho”, who provided us with support and field facilities. Funding: Research was partially funded by Instituto Nacional de Investigación Agropecuaria (FPTA 175), and Agencia Nacional de Investigación e Innovación (BE-POS-2009-781). This work was carried out with the aid of a grant from the Inter-American Institute for Global Change Research (IAI) CRN3095 which is supported by the US National Science Foundation (Grant GEO-1128040).

Compliance with ethical standards

The authors declare that they have no conflict of interest.


  1. Altesor A, Oesterheld M, Leoni E, Lezama F, Rodríguez C (2005) Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol 179:83–91CrossRefGoogle Scholar
  2. Altesor A, Piñeiro G, Lezama F, Jackson RB, Sarasola M, Paruelo JM (2006) Ecosystem changes associated with grazing in subhumid South American grasslands. J Veg Sci 17:323–332CrossRefGoogle Scholar
  3. Bartos DL, Sims PL (1974) Root dynamics of a shortgrass ecosystem. J Range Manag 27:33–36CrossRefGoogle Scholar
  4. Blumenthal MB, Bell M, del Corral J, Cousin R, Khomyakov I (2014) IRI data library: enhancing accessibility of climate knowledge. Earth Perspect 1:1–12CrossRefGoogle Scholar
  5. Dahlman RC, Kucera CL (1965) Root productivity and turnover in native prairie. Ecology 46:84–89CrossRefGoogle Scholar
  6. Derner J, Boutton T, Briske D (2006) Grazing and ecosystem carbon storage in the North American great plains. Plant Soil 280:77–90CrossRefGoogle Scholar
  7. Doll UM (1991) C-14 translocation to the below ground subsystem in a temperate humid grassland (Argentina). In: McMichael BL, Persson H (eds) Plant roots and their environment. Elsevier Science Publishers, Amsterdam, pp 350–358CrossRefGoogle Scholar
  8. Doll UM, Deregibus VA (1986) Efecto de la exclusión del pastoreo sobre el subsistema subterráneo de un pastizal templado húmedo. Turrialba 36:337–344Google Scholar
  9. Ferraro DO, Oesterheld M (2002) Effect of defoliation on grass growth. A quantitative review. Oikos 98:125–133CrossRefGoogle Scholar
  10. Franzluebbers AJ, Stuedemann JA (2010) Surface soil changes during twelve years of pasture management in the Southern Piedmont USA. Soil Sci Soc Am J 74:2131–2141CrossRefGoogle Scholar
  11. Garcia-Pausas J, Casals P, Romanyà J, Vallecillo S, Sebastià MT (2011) Seasonal patterns of belowground biomass and productivity in mountain grasslands in the Pyrenees. Plant Soil 340:315–326CrossRefGoogle Scholar
  12. Gill RA, Burke IC (2002) Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant Soil 241:233–242CrossRefGoogle Scholar
  13. Grigera G, Oesterheld M, Pacín F (2007) Monitoring forage production for farmers’ decision making. Agr Syst 94:637–648CrossRefGoogle Scholar
  14. Hui D, Jackson RB (2006) Geographic and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol 169:85–93CrossRefPubMedGoogle Scholar
  15. INIA-GRASS, Instituto Nacional de Investigación Agropecuaria (2010) Banco de datos agroclimáticos 1965–2010. La Estanzuela, Colonia, Uruguay. Accessed 1 June 2012
  16. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411CrossRefGoogle Scholar
  17. Lauenroth WK, Whitman WC (1971) A rapid method for washing roots. J Range Manag 24:308–309CrossRefGoogle Scholar
  18. Lezama F, Baeza S, Altesor A, Cesa A, Chaneton E, Paruelo JM (2014) Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J Veg Sci 25:8–21CrossRefGoogle Scholar
  19. López-Mársico L, Altesor A (2011) Relación entre la riqueza de especies vegetales y la productividad en pastizales naturales. Ecol Aust 21:101–109Google Scholar
  20. McNaughton SJ, Banyikwa FF, McNaughton MM (1998) Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587–592CrossRefGoogle Scholar
  21. Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366CrossRefGoogle Scholar
  22. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766CrossRefGoogle Scholar
  23. Mueller K, Tilman D, Fornara D, Hobbie S (2013) Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94:787–793CrossRefGoogle Scholar
  24. Padilla F, Aarts B, Roijendijk Y, Coluwe H, Mommer L, Visser E, Kroon H (2013) Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant Soil 369:377–386CrossRefGoogle Scholar
  25. Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51:1173–1179CrossRefGoogle Scholar
  26. Paruelo JM, Piñeiro G, Baldi G, Baeza S, Lezama F, Altesor A, Oesterheld M (2010) Carbon stocks and fluxes in rangelands of the Rio de la Plata basin. Rangel Ecol Manag 63:94–108CrossRefGoogle Scholar
  27. Paruelo J M, Oyarzabal M, Oesterheld M (2011) El seguimiento de los recursos forrajeros mediante sensores remotos: bases y aplicaciones. In: Altesor A, Ayala W, Paruelo JM (eds) Bases ecológicas y tecnológicas para el manejo de pastizales. Serie Técnica N° 26, INIA, Montevideo, pp. 135–146Google Scholar
  28. Pérez CA, Frangi JL (2000) Grassland biomass dynamics along an altitudinal gradient in the Pampa. J Range Manag 53:518–528CrossRefGoogle Scholar
  29. Piñeiro G, Paruelo JM, Oesterheld M (2006) Potential long‐term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of Southern South America. Glob Chang Biol 12:1267–1284CrossRefGoogle Scholar
  30. Piñeiro G, Paruelo JM, Jobbágy EG, Jackson RB, Oesterheld M (2009) Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. Global Biogeochem Cycles 23:1–14Google Scholar
  31. Piñeiro G, Paruelo JM, Oesterheld M, Jobbágy EG (2010) Pathways of grazing effects on soil organic carbon and nitrogen. Range Ecol Manag 63:109–119CrossRefGoogle Scholar
  32. Pucheta E, Bonamici I, Cabido M, Díaz S (2004) Below-ground biomass and productivity of a grazed site and a neighboring ungrazed exclosure in a grassland in central Argentina. Austral Ecol 29:201–208CrossRefGoogle Scholar
  33. Rodríguez C, Leoni E, Lezama F, Altesor A (2003) Temporal trends in species composition and plant traits in natural grasslands of Uruguay. J Veg Sci 14:433–440CrossRefGoogle Scholar
  34. Sala O, Deregibus A, Schlichter T, Alippe H (1981) Productivity dynamics of a native temperate grassland in Argentina. J Range Manag 34:48–51CrossRefGoogle Scholar
  35. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic, San DiegoGoogle Scholar
  36. Schuman GE, Reeder JD, Manley JT, Hart RH, Manley WA (1999) Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol Appl 9:65–71CrossRefGoogle Scholar
  37. Semmartin M, Oyarzabal M, Loreti J, Oesterheld M (2007) Controls of primary productivity and nutrient cycling in a temperate grassland with year-round production. Aust Ecol 32:416–428CrossRefGoogle Scholar
  38. Sims PL, Singh JS (1978) The structural and function of ten western North American grasslands. III. Net primary productivity, turnover and efficiencies of energy capture and water use. J Ecol 66:573–597CrossRefGoogle Scholar
  39. Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1991) Rio de la Plata grasslands. In: Coupland R (ed) Natural grasslands: introduction and western hemisphere. Elsevier, Amsterdam, pp 367–407Google Scholar
  40. Stewart A, Frank D (2008) Short sampling intervals reveal very rapid root turnover in a temperate grassland. Oecologia 157:453–458CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luis López-Mársico
    • 1
  • Alice Altesor
    • 1
  • Mariano Oyarzabal
    • 2
  • Pablo Baldassini
    • 2
  • José M. Paruelo
    • 1
    • 2
  1. 1.Instituto de Ecología y Ciencias Ambientales, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Laboratorio de Análisis Regional y Teledetección and Departamento de Métodos Cuantitativos y Sistemas de Información, IFEVA and Facultad de AgronomíaUniversidad de Buenos Aires and CONICETBuenos AiresArgentina

Personalised recommendations