Plant and Soil

, Volume 392, Issue 1–2, pp 175–189 | Cite as

Root expression of nitrogen metabolism genes reflects soil nitrogen cycling in an organic agroecosystem

  • Timothy M. Bowles
  • Philipp A. Raab
  • Louise E. Jackson
Regular Article

Abstract

Background and aims

Roots in agroecosystems encounter spatially and temporally heterogeneous nitrogen (N) availability in soil. Understanding root physiological processes in concert with soil microbial N dynamics following spatially discrete N pulses under field conditions will aid in the management of agroecosystem processes for N use efficiency.

Methods

This study examined the short-term response (<5 days) of tomato (Solanum lycopersicum L.) roots and soil N cycling to a pulse of inorganic N in an undisturbed soil patch on an organic farm using a novel combination of molecular and 15N isotopic techniques.

Results

Tomato roots rapidly responded to and exploited the N pulse via upregulation of key N metabolism genes (e.g. cytosolic glutamine synthetase GS1) that comprise the core physiological response of roots to patchy soil N availability. Strong root activity limited accumulation of soil NO3 despite high rates of gross nitrification. Roots out-competed soil microbes for the inorganic N, even on a short time scale, likely as a result of high plant N demand and microbial C limitation. The transient root gene expression response (absent by 4 days after the N pulse) underscored the sensitivity of root N uptake to local N availability.

Conclusions

Root expression of genes such as GS1 could complement soil inorganic N pools and measurements of soil microbial activity to serve as integrative indicators of rapid plant-soil N cycling.

Keywords

Root gene expression Cytosolic glutamine synthetase Isotope pool dilution Tomato (Solanum lycopersicumNitrogen cycling 

Supplementary material

11104_2015_2412_MOESM1_ESM.xlsx (11 kb)
Suppl. Table 1(XLSX 10 kb)
11104_2015_2412_MOESM2_ESM.xlsx (11 kb)
Suppl. Table 2(XLSX 11 kb)

References

  1. Alvarez JM, Vidal EA, Gutiérrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15:185–191. doi:10.1016/j.pbi.2012.03.009 CrossRefPubMedGoogle Scholar
  2. Barker SJ, Stummer B, Gao L et al (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant J 15:791–797CrossRefGoogle Scholar
  3. Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182:608–620. doi:10.1111/j.1469-8137.2009.02823.x CrossRefPubMedGoogle Scholar
  4. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157CrossRefGoogle Scholar
  5. Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262. doi:10.1016/j.soilbio.2013.10.004 CrossRefGoogle Scholar
  6. Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36. doi:10.1016/S0038-0717(02)00233-X CrossRefGoogle Scholar
  7. Burger M, Jackson LE (2005) Plant and microbial nitrogen use and turnover: rapid conversion of nitrate to ammonium in soil with roots. Plant Soil 266:289–301. doi:10.1007/s11104-005-1362-0 CrossRefGoogle Scholar
  8. Cabrera M, Beare M (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012CrossRefGoogle Scholar
  9. Cahill JF, McNickle GG (2011) The behavioral ecology of nutrient foraging by plants. Annu Rev Ecol Evol Syst 42:289–311. doi:10.1146/annurev-ecolsys-102710-145006 CrossRefGoogle Scholar
  10. Cavagnaro TR, Jackson LE, Six J et al (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225CrossRefGoogle Scholar
  11. Cren M, Hirel B (1999) Glutamine synthetase in higher plants: regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol 40:1187–1193. doi:10.1093/oxfordjournals.pcp.a029506 CrossRefGoogle Scholar
  12. Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution. J Soil Sci 42:335–349CrossRefGoogle Scholar
  13. Drinkwater LE, Snapp S (2007) Nutrients in agroecosystems: rethinking the management paradigm. Adv Agron 92:163–186Google Scholar
  14. El Omari R, Rueda-López M, Avila C et al (2010) Ammonium tolerance and the regulation of two cytosolic glutamine synthetases in the roots of sorghum. Funct Plant Biol 37:55–63. doi:10.1071/FP09162 CrossRefGoogle Scholar
  15. Elia A, Conversa G (2012) Agronomic and physiological responses of a tomato crop to nitrogen input. Eur J Agron 40:64–74. doi:10.1016/j.eja.2012.02.001 CrossRefGoogle Scholar
  16. Evans RD, Bloom AJ, Sukrapanna SS, Ehleringer JR (1996) Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ 19:1317–1323. doi:10.1111/j.1365-3040.1996.tb00010.x CrossRefGoogle Scholar
  17. Foster JC (1995) Soil nitrogen. In: Alef K, Nannipieri P (eds) Methods appl. soil microbiol. biochem. Academic, San Diego, pp 79–87Google Scholar
  18. Frank DA, Groffman PM (2009) Plant rhizospheric N processes: what we don’t know and why we should care. Ecology 90:1512–1519. doi:10.1890/08-0789.1 CrossRefPubMedGoogle Scholar
  19. Gansel X, Muños S, Tillard P, Gojon A (2001) Differential regulation of the NO3 and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143–155CrossRefPubMedGoogle Scholar
  20. Gazzarrini S, Lejay L, Gojon A et al (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–948CrossRefPubMedCentralPubMedGoogle Scholar
  21. Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms—a review. Soil Biol Biochem 42:2058–2067. doi:10.1016/j.soilbio.2010.08.021 CrossRefGoogle Scholar
  22. Giller KE, Chalk P, Dobermann A et al (2004) Emerging technologies to increase the efficiency and use of fertilizer nitrogen. In: Mosier AR, Syers JK, Freney JR (eds) Agric. nitrogen cycle. Island Press, Washington, pp 35–52Google Scholar
  23. Glass ADM (2003) Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. CRC Crit Rev Plant Sci 22:453–470. doi:10.1080/07352680390243512 CrossRefGoogle Scholar
  24. Glass ADM, Britto DT, Kaiser BN et al (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864CrossRefPubMedGoogle Scholar
  25. Grandy A, Kallenbach C, Loecke TD et al (2012) The biological basis for nitrogen management in agroecosystems. In: Cheeke TE, Coleman DC, Wall DH (eds) Microb. Sustain. Agroecosystems. CRC Press, Ecol, pp 113–132Google Scholar
  26. Harrison KA, Bol R, Bardgett RD (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–999CrossRefPubMedGoogle Scholar
  27. Hartz T, Bottoms T (2009) Nitrogen requirements of drip-irrigated processing tomatoes. HortSci 44:1988–1993Google Scholar
  28. Hirel B, Lea PJ (2001) Ammonium assimilation. In: Lea PJ, Morot-Gaundry JF (eds) Plant nitrogen. Springer, Berlin, pp 79–99CrossRefGoogle Scholar
  29. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi:10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  30. Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308CrossRefPubMedGoogle Scholar
  31. Hodge A, Berta G, Doussan C et al (2009) Plant root growth, architecture and function. Plant Soil 321:153–187. doi:10.1007/s11104-009-9929-9 CrossRefGoogle Scholar
  32. Inselsbacher E, Hinko-Najera Umana N, Stange FC et al (2010) Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biol Biochem 42:360–372. doi:10.1016/j.soilbio.2009.11.019 CrossRefGoogle Scholar
  33. Jackson LE, Bloom AJ (1990) Root distribution in relation to soil nitrogen availability in field-grown tomatoes. Plant Soil 128:115–126CrossRefGoogle Scholar
  34. Jackson R, Caldwell M (1989) The timing and degree of root proliferation in fertile-soil microsites for three cold-desert perennials. Oecologia 81:149–153CrossRefGoogle Scholar
  35. Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415. doi:10.1016/0038-0717(89)90152-1 CrossRefGoogle Scholar
  36. Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363. doi:10.1146/annurev.arplant.59.032607.092932 CrossRefPubMedGoogle Scholar
  37. Jenkinson D, Brookes P, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol Biochem 36:5–7. doi:10.1016/j.soilbio.2003.10.002 CrossRefGoogle Scholar
  38. Jensen ES (1997) Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues. Biol Fertil Soils 24:39–44CrossRefGoogle Scholar
  39. Kichey T, Heumez E, Pocholle D et al (2006) Combined agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine synthetase. New Phytol 169:265–78. doi:10.1111/j.1469-8137.2005.01606.x
  40. Kirkham D, Bartholomew W (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Proc 33–34Google Scholar
  41. Lauter FR, Ninnemann O, Bucher M et al (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci U S A 93:8139–8144CrossRefPubMedCentralPubMedGoogle Scholar
  42. Linn D, Doran J (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272CrossRefGoogle Scholar
  43. Lopes MS, Araus JL (2008) Comparative genomic and physiological analysis of nutrient response to NH4 +, NH4 +:NO3 and NO3 in barley seedlings. Physiol Plant 134:134–150. doi:10.1111/j.1399-3054.2008.01114.x CrossRefPubMedGoogle Scholar
  44. Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 55:1293–1305. doi:10.1093/jxb/erh147 CrossRefPubMedGoogle Scholar
  45. Lu M, Yang Y, Luo Y et al (2011) Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytol 189:1040–1050. doi:10.1111/j.1469-8137.2010.03563.x CrossRefPubMedGoogle Scholar
  46. Lundquist E, Jackson L, Scow K (1999) Wet–dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol Biochem 31:1031–1038CrossRefGoogle Scholar
  47. Machado R, Rosário M, Oliveira G, Portas C (2003) Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant Soil 255:333–341CrossRefGoogle Scholar
  48. Magdoff F, Ross D, Amadon J (1984) A soil test for nitrogen availability to corn. Soil Sci Soc Am J 48:1301–1304CrossRefGoogle Scholar
  49. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J et al (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157. doi:10.1093/aob/mcq028 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36. doi:10.1007/s11104-004-0965-1 CrossRefGoogle Scholar
  51. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol Chem 5:62–71. doi:10.1006/niox.2000.0319 CrossRefGoogle Scholar
  52. Moldrup P, Olesen T, Komatsu T et al (2001) Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65:613–623CrossRefGoogle Scholar
  53. Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29. doi:10.1007/s11104-013-1645-9 CrossRefGoogle Scholar
  54. Oksanen J, Blanchet FG, Kindt R et al. (2012) Vegan: community ecology packageGoogle Scholar
  55. Recous S, Mary B, Faurie G (1990) Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biol Biochem 22:913–922CrossRefGoogle Scholar
  56. Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125. doi:10.1146/annurev.environ.032108.105046 CrossRefGoogle Scholar
  57. Ros GH, Hoffland E, van Kessel C, Temminghoff E (2009) Extractable and dissolved soil organic nitrogen—a quantitative assessment. Soil Biol Biochem 41:1029–1039. doi:10.1016/j.soilbio.2009.01.011 CrossRefGoogle Scholar
  58. Ruzicka DR, Barrios-Masias FH, Hausmann NT et al (2010) Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biol 10:1–19. doi:10.1186/1471-2229-10-75 CrossRefGoogle Scholar
  59. Ruzicka DR, Hausmann NT, Barrios-Masias FH et al (2011) Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions. Plant Soil 350:145–162. doi:10.1007/s11104-011-0890-z CrossRefGoogle Scholar
  60. Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69. doi:10.1146/annurev.arplant.58.032806.103750 CrossRefPubMedGoogle Scholar
  61. Schimel J, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563. doi:10.1016/S0038-0717(03)00015-4 CrossRefGoogle Scholar
  62. Shi W, Norton JM (2000) Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer. Soil Biol Biochem 32:1453–1457. doi:10.1016/S0038-0717(00)00050-X CrossRefGoogle Scholar
  63. Smukler SM, Sánchez-Moreno S, Fonte SJ et al (2010) Biodiversity and multiple ecosystem functions in an organic farmscape. Agric Ecosyst Environ 139:80–97. doi:10.1016/j.agee.2010.07.004 CrossRefGoogle Scholar
  64. Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855CrossRefGoogle Scholar
  65. Tsay Y-F, Chiu C-C, Tsai C-B et al (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300. doi:10.1016/j.febslet.2007.04.047 CrossRefPubMedGoogle Scholar
  66. Van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192CrossRefGoogle Scholar
  67. Von Wirén N, Gazzarrini S, Gojon A, Frommer WB (2000a) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261CrossRefGoogle Scholar
  68. Von Wirén N, Lauter FR, Ninnemann O et al (2000b) Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J 21:167–175CrossRefGoogle Scholar
  69. Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots: Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359Google Scholar
  70. Weier KL, Doran JW, Power JF, Walters DT (1993) Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci Soc Am J 57:66–72CrossRefGoogle Scholar
  71. Wu J, Joergensen RG, Pommerening B et al (1990) Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure. Soil Biol Biochem 22:1167–1169CrossRefGoogle Scholar
  72. Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409. doi:10.1126/science.279.5349.407 CrossRefPubMedGoogle Scholar
  73. Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc Natl Acad Sci 110:6328–6333. doi:10.1073/pnas.1219993110 CrossRefPubMedCentralPubMedGoogle Scholar
  74. Zhuo D, Okamoto M, Vidmar JJ, Glass AD (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J 17:563–568CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Timothy M. Bowles
    • 1
  • Philipp A. Raab
    • 1
  • Louise E. Jackson
    • 1
  1. 1.Department of Land, Air and Water ResourcesUniversity of California DavisDavisUSA

Personalised recommendations