Advertisement

Plant and Soil

, Volume 390, Issue 1–2, pp 195–211 | Cite as

Modeling soil CO2 production and transport to investigate the intra-day variability of surface efflux and soil CO2 concentration measurements in a Scots Pine Forest (Pinus Sylvestris, L.)

  • Stéphanie GoffinEmail author
  • Christophe Wylock
  • Benoit Haut
  • Martin Maier
  • Bernard Longdoz
  • Marc Aubinet
Regular Article

Abstract

Aimed

The main aim of this study is to improve the mechanistic understanding of soil CO2 efflux (Fs), especially its temporal variation at short-time scales, by investigating, through modeling, which underlying process among CO2 production and its transport up to the atmosphere is responsible for observed intra-day variation of Fs and soil CO2 concentration [CO2].

Methods

In this study, a measurement campaign of Fs and vertical soil [CO2] profiles was conducted in a Scots Pine Forest soil in Hartheim (Germany) and used to develop a model testing several hypotheses. A reference model taking into account a purely diffusive CO2 transport and a temperature-dependent CO2 production is compared to models with a more complex description of either CO2 production or CO2 transport. For transport, the introduction of advection and the dispersion is investigated. For the production, the emergent hypothesis of the phloem pressure concentration wave (PPCW) influence is tested.

Results

We show that intra-day variation of Fs and [CO2] is better represented when the more complex CO2 production expression is taken into account compared to the more detailed description of CO2 transport.

Conclusion

We conclude that focus should be placed on the potential factors affecting the CO2 production, rather than on the transport process description

Keywords

Soil CO2 efflux Production Transport Process-based model Intra-day variability 

Notes

Acknowledgments

Stéphanie Goffin acknowledges the support of the Belgium National Fund for Scientific Research (FNRS), within the framework of her thesis (FRIA) and the FEDER (Fonds Européen de Développement Régional). Christophe Wylock acknowledges the support of the FNRS within the framework of his postdoctoral research. The authors are grateful to B. Clerc, P. Courtoisand J.M Gioria of the UMR1137 at INRA Nancy for the installation and maintenance of the experimental set-up during summer 2010. The authors wish to thank the reviewers for their comments.

References

  1. Bahn M et al (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11(8):1352–1367CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bahn M, Schmitt M, Siegwolf R, Richter A, Bruggemann N (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182(2):451–60. doi: 10.1111/j.1469-8137.2008.02755.x
  3. Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–582CrossRefPubMedGoogle Scholar
  4. Boone R, Knute JN, Jana DC, Jason PK (1998) Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature 396(6711):570–572CrossRefGoogle Scholar
  5. Bowling DR, Massman WJ (2011) Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack. J Geophys Res Biogeosci 116(G4), G04006Google Scholar
  6. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition. Nature 440:165–173CrossRefPubMedGoogle Scholar
  7. Davidson E, Verchot L, Cattânio H, Ackerman IL, Carvalho J (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69CrossRefGoogle Scholar
  8. Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113(1–4):21–37CrossRefGoogle Scholar
  9. Davidson EA, Janssens IA, Luo Y (2006a) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Chang Biol 12(2):154–164CrossRefGoogle Scholar
  10. Davidson EA, Savage KE, Trumbore SE, Borken W (2006b) Vertical partitioning of CO2 production within a temperate forest soil. Glob Chang Biol 12(6):944–956CrossRefGoogle Scholar
  11. Denman KL et al (2007) Couplings between changes in the climate system andbiogeochemistry. In: Solomon S (ed) Climate change 2007: the physicalscience basis. Contribution of working group I to the fourth assessment reportof the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, New YorkGoogle Scholar
  12. Doff sotta E et al (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Glob Chang Biol 10(5):601–617CrossRefGoogle Scholar
  13. Ekblad A, Högberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308CrossRefGoogle Scholar
  14. Ekblad A, Boström B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143(1):136–142CrossRefPubMedGoogle Scholar
  15. Epron D, Farque L, Lucot E, Badot P-M (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56(4):289–295CrossRefGoogle Scholar
  16. Fang C, Moncrieff JB (1999) A model for soil CO2 production and transport 1: model development. Agric For Meteorol 95(4):225–236CrossRefGoogle Scholar
  17. Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33(2):155–165CrossRefGoogle Scholar
  18. FAO (2006) World Reference Base for Soil Resources 2006. World Soil ResourcesReport No 103, FAO, RomeGoogle Scholar
  19. Fassbinder JJ, Griffis TJ, Baker JM (2012) Interannual, seasonal, and diel variability in the carbon isotope composition of respiration in a C3/C4 agricultural ecosystem. Agric For Meteorol 153:144–153CrossRefGoogle Scholar
  20. Flechard CR et al (2007) Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agric For Meteorol 142(1):66–84CrossRefGoogle Scholar
  21. Gamnitzer U, Moyes AB, Bowling DR, H, S (2011) Measuring and modelling the isotopic composition of soil respiration: insight from a grassland tracer experiment. Biogeosciences 8(5)Google Scholar
  22. Gavrichkova O, Kuzyakov Y (2012) Direct phloem transport and pressure concentration waves in linking shoot and rhizosphere activity. Plant Soil 351(1–2):23–30CrossRefGoogle Scholar
  23. Goffin S et al (2014) Characterization of the soil CO2 production and its carbon isotope composition in forest soil layers using the flux-gradient approach. Agric For Meteorol 188:45–57CrossRefGoogle Scholar
  24. Hirano T (2005) Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a temperate deciduous forest. Global Biogeochem Cycles 19(2): n/a–n/a.Google Scholar
  25. Hirano T, Kim H, Tanaka Y (2003) Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. J Geophys Res Atmos 108(D20): n/a–n/a.Google Scholar
  26. Hirsch AI, Trumbore SE, Goulden ML (2004) The surface CO2 gradient and pore-space storage flux in a high-porosity litter layer. Tellus B 56(4):312–321CrossRefGoogle Scholar
  27. Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21(10):548–554CrossRefPubMedGoogle Scholar
  28. Holst J et al (2008) Impacts of summer water limitation on the carbon balance of a Scots pine forest in the southern upper Rhine plain. Agric For Meteorol 148(11):1815–1826CrossRefGoogle Scholar
  29. Janssens IA, Pilegaard K (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Glob Chang Biol 9(6):911–918CrossRefGoogle Scholar
  30. Jassal RS et al (2004) A model of the production and transport of CO2 in soil: predicting soil CO2 concentrations and CO2 efflux from a forest floor. Agric For Meteorol 124(3–4):219–236CrossRefGoogle Scholar
  31. Jassal R, Black A, Novak M, Morgenstern K, Nesic Z, Gaumont-Guay D (2005) Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agric For Meteorol 130(3):176–192Google Scholar
  32. Kätterer T, Reichstein M, Andrén O, Lomander A (1998) Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol Fertil Soils 27(3):258–262CrossRefGoogle Scholar
  33. Kuzyakov Y, Gavrichkova O (2010) REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16(12):3386–3406CrossRefGoogle Scholar
  34. Lehmann BE, Lehmann M, Neftel A, Tarakanov SV (2000) Radon-222 monitoring of soil diffusivity. Geophys Res Lett 27(23):3917–3920CrossRefGoogle Scholar
  35. Lloyed J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323CrossRefGoogle Scholar
  36. Longdoz B, Yernaux M, Aubinet M (2000) Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Glob Chang Biol 6:907–917CrossRefGoogle Scholar
  37. Luo Y, Zhou X (2006) Preface, soil respiration and the environment. Academic, Burlington, pp ix–xiCrossRefGoogle Scholar
  38. Maier M, Schack-Kirchner H (2014) Using the gradient method to determine soil gas flux: a review. Agric For Meteorol 192–193:78–95CrossRefGoogle Scholar
  39. Maier M, Schack-Kirchner H, Hildebrand EE, Holst J (2010) Pore-space CO2 dynamics in a deep, well-aerated soil. Eur J Soil Sci 61(6):877–887CrossRefGoogle Scholar
  40. Maier M et al (2012) Turbulence effect on gas transport in three contrasting forest soils. Soil Sci Soc Am J 76(5):1518–1528CrossRefGoogle Scholar
  41. Marron N, Plain C, Longdoz B, Epron D (2009) Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant Soil 318(1–2):137–151CrossRefGoogle Scholar
  42. Mencuccini M, Holtta T (2009) The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytol 185:189–203CrossRefPubMedGoogle Scholar
  43. Moyes AB, Gaines SJ, Siegwolf RTW, Bowling DR (2010) Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration. Plant Cell Environ 33(11):1804–1819CrossRefPubMedGoogle Scholar
  44. Phillips CL et al (2010) Soil moisture effects on the carbon isotope composition of soil respiration. Rapid Commun Mass Spectrom 24(9):1271–1280CrossRefPubMedGoogle Scholar
  45. Plain C et al (2009) Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiol 29(11):1433–1445CrossRefPubMedGoogle Scholar
  46. Pumpanen J et al (2008) Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Sci Soc Am J 72(5):1187CrossRefGoogle Scholar
  47. Pumpanen J, Bernard Longdoz, Kutsch WL (2010) Field measurements of soil respiration: principles and constraints, potentials and limitations of different methods. Soil Carbon Dyn. Cambridge University PressGoogle Scholar
  48. Rayment MB, Jarvis PG (1997) An improved open chamber system for measuring soil CO2 effluxes of a Boreal black spruce forest. J Geophys Res 102:28779–28784CrossRefGoogle Scholar
  49. Risk D, Kellman L, Beltrami H (2002) Carbon dioxide in soil profiles: production and temperature dependence. Geophys Res Lett 29(6):11-1–11-4CrossRefGoogle Scholar
  50. Risk D, Kellman L, Beltrami H (2008) A new method for in situ soil gas diffusivity measurement and applications in the monitoring of subsurface CO2 production. J Geophys Res Biogeosci 113(G2), G02018Google Scholar
  51. Risk D, Nickerson N, Phillips CL, Kellman L, Moroni M (2012) Drought alters respired δ13CO2 from autotrophic, but not heterotrophic soil respiration. Soil Biol Biochem 50:26–32CrossRefGoogle Scholar
  52. Riveros-Iregui DA, McGlynn BL, Epstein HE, Welsch DL (2008) Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probes. J Geophys Res Biogeosci 113(G4), G04027Google Scholar
  53. Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73(1):3–27CrossRefGoogle Scholar
  54. Savage KE, Davidson EA (2003) A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution. J Exp Bot 54(384):891–899CrossRefPubMedGoogle Scholar
  55. Schwen A et al (2011) A modified method for the in situ measurement of soil gas diffusivity. Soil Sci Soc Am J 75(3):813–821CrossRefGoogle Scholar
  56. Seok B et al (2009) An automated system for continuous measurements of trace gas fluxes through snow: an evaluation of the gas diffusion method at a subalpine forest site, Niwot Ridge, Colorado. Biogeochemistry 95(1):95–113CrossRefGoogle Scholar
  57. Subke J-A, Reichstein M, Tenhunen JD (2003) Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biol Biochem 35(11):1467–1483CrossRefGoogle Scholar
  58. Takle ES et al (2003) High-frequency pressure variations in the vicinity of a surface CO <sub> 2</sub> flux chamber. Agric For Meteorol 114(3):245–250CrossRefGoogle Scholar
  59. Takle ES et al (2004) Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agric For Meteorol 124(3–4):193–206CrossRefGoogle Scholar
  60. Tang J, Baldocchi DD, Qi Y, Xu L (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteorol 118(3–4):207–220CrossRefGoogle Scholar
  61. Tang J, Misson L, Gershenson A, Cheng W, Goldstein AH (2005) Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agric For Meteorol 132:212–227CrossRefGoogle Scholar
  62. Thompson MV, Holbrook NM (2003) Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ 26:1561–1577CrossRefGoogle Scholar
  63. Turcu VE, Jones SB, Or D (2005) Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux. Vadose Zone J 4(4):1161–1169CrossRefGoogle Scholar
  64. Van Bochove E, Bertrand N, Caron J (1998) In situ estimation of the gaseous nitrous oxide diffusion coefficient in a sandy loam soil. Soil Sci Soc Am J 62(5):1178–1184CrossRefGoogle Scholar
  65. Vargas R, Carbone M, Reichstein M, Baldocchi D (2011) Frontiers and challenges in soil respiration research: from measurements to model-data integration. Biogeochemistry 102(1–3):1–13CrossRefGoogle Scholar
  66. Wan S, Luo Y (2003) Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob Biogeochem Cycles 17(2):1054CrossRefGoogle Scholar
  67. Wingate L et al (2010) Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytol 188:576–589CrossRefPubMedGoogle Scholar
  68. Yuste JC, Janssens IA, Ceulemans R (2005) Calibration and validation of an empirical approach to model soil CO2 efflux in a deciduous forest. Biogeochemistry 73(1):209–230CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stéphanie Goffin
    • 1
    Email author
  • Christophe Wylock
    • 2
  • Benoit Haut
    • 2
  • Martin Maier
    • 3
  • Bernard Longdoz
    • 4
    • 5
  • Marc Aubinet
    • 1
  1. 1.Unit of Biosystem PhysicsUniversité de Liège–Gembloux Agro-Bio TechGemblouxBelgium
  2. 2.Transfers, Interfaces and Processes (TIPs)Université Libre de Bruxelles (ULB)BrusselsBelgium
  3. 3.University of FreiburgFreiburg im BreisgauGermany
  4. 4.INRA, UMR d’Ecologie et Ecophysiologie Forestières, UMR1137ChampenouxFrance
  5. 5.Université de Lorraine, UMR d’Ecologie et Ecophysiologie Forestières, UMR1137Vandoeuvre Les NancyFrance

Personalised recommendations