Advertisement

Plant and Soil

, Volume 390, Issue 1–2, pp 61–76 | Cite as

Partitioning NEE for absolute C input into various ecosystem pools by combining results from eddy-covariance, atmospheric flux partitioning and 13CO2 pulse labeling

  • M. RiedererEmail author
  • J. Pausch
  • Y. Kuzyakov
  • T. FokenEmail author
Regular Article

Abstract

Background and aims

The complexity of ecosystem processes, especially under continuously changing environmental conditions, requires high-resolution insight into ecosystem carbon (C) fluxes. It is essential to gain not only information about relative C balance and fluxes (common for partitioning studies), but also to obtain these in absolute mass units.

Methods

To evaluate absolute fluxes in belowground C pools, the results of 21-day eddy-covariance and stable isotope labeling experiment in summer 2010, were combined. Eddy-covariance based net ecosystem exchange was measured on extensively managed grassland and separated into underlying assimilation and ecosystem respiration through the use of a C flux partitioning model. Resultant CO2 assimilation served as absolute C input into the ecosystem and was further partitioned by applying the relative C distribution in subsidiary pools, gained by 13C pulse labeling and tracing.

Results

The results form eddy-covariance measurements showed that the extensively managed grassland was a significant net C sink of −91 g C m−2 a−1 in 2010.

The mean daily assimilation of −7.1 g C m−2 d−1 was partitioned into fluxes of 2.5, 0.8, 0.5, 2.3 and 1.0 g C m−2 d−1 into shoots, roots, soil, shoot respiration and CO2 efflux from soil, respectively.

Conclusions

We conclude that the combination of EC measurements with isotope labeling techniques allowed determining the absolute C input into several ecosystem pools. Hence, the study demonstrates an approach to expand atmospheric flux measurements and to gain insight into the importance of individual ecosystem pools for soil C cycling.

Keywords

Stable isotope pulse labeling Net ecosystem exchange Carbon flux Extensively managed grassland 

Notes

Acknowledgments

The project “Investigation of carbon turnover of grasslands in a northern Bavarian low mountain range under extreme climate conditions” was funded within the joint research project “FORKAST” by the Bavarian State Ministry of Sciences, Research and Arts. The authors wish to acknowledge the support of the participants of the FORKAST project, especially Prof. Dr. Anke Jentsch and Alexander Ulmer for evaluation of biodiversity and species determination on our site. Finally, the authors want to thank Prof. Dr. Gerhard Gebauer and his team of the Laboratory of Isotope Biogeochemistry for the abundance analysis of the carbon isotopes, all colleagues, technicians and research assistants who took part in the field and laboratory work, especially Martin Rimmler, Martin Pannek, Ilse Thaufelder, Johannes Olesch and last but not least Peng Zhao for his support with the flux partitioning model.

References

  1. Allard V, Robin C, Newton P, Lieffering M, Soussana J (2006) Short and long–term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biol Biochem 38:1178–1187CrossRefGoogle Scholar
  2. Allard V, Soussana J, Falcimagne R, Berbigier P, Bonnefond J, Ceschia E, D’hour P, Hénault C, Laville P, Martin C, Pinarès–Patino C (2007) The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi–natural grassland. Agric Ecosyst Environ 121:47–58CrossRefGoogle Scholar
  3. Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. The greenhouse gas balance of grasslands in Europe. Agric Ecosyst Environ 121:5–20CrossRefGoogle Scholar
  4. Ammann C, Spirig C, Leifeld J, Neftel A (2009) Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. Agric Ecosyst Environ 133:150–162CrossRefGoogle Scholar
  5. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers JA, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology. Adv Ecol Res: 113–175Google Scholar
  6. Aubinet M, Vesala T, Papale D (2012) Eddy covariance. Springer, DordrechtCrossRefGoogle Scholar
  7. Bahn M, Schmitt M, Siegwolf R, Richter A, Brüggemann N (2009) Does photosynthesis affect grassland soil–respired CO 2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460CrossRefPubMedCentralPubMedGoogle Scholar
  8. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492CrossRefGoogle Scholar
  9. Baldocchi DD, Falge E, Gu LH, Olson R, Hollinger DY, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein AH, Katul GG, Law BE, Lee XH, Malhi Y, Meyers TP, Munger JW, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  10. Bazot S, Ulff L, Blum H, Nguyen C, Robin C (2006) Effects of elevated CO2 concentration on rhizodeposition from Lolium perenne grown on soil exposed to 9 years of CO2 enrichment. Soil Biol Biochem 38:729–736CrossRefGoogle Scholar
  11. Biasi C, Pitkämäki AS, Tavi NM, Koponen HT, Martikainen PJ (2012) An isotope approach based on 13C pulse–chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peat lands. Boreal Environ Res 17(3/4):184–192Google Scholar
  12. Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Chang Biol 7:127–145CrossRefGoogle Scholar
  13. Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635CrossRefGoogle Scholar
  14. Buchmann N (2002) Plant ecophysiology and forest response to global change. Tree Physiol: 1177–1184Google Scholar
  15. Budge K, Leifeld J, Hiltbrunner E, Fuhrer J (2011) Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8:1911–1923CrossRefGoogle Scholar
  16. Butler JL, Bottomley PJ, Griffith SM, Myrold DD (2004) Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres. Soil Biol Biochem 36:371–382CrossRefGoogle Scholar
  17. Chou WW, Silver WL, Jackson RD, Thompson AW, Allen–Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob Chang Biol 14:1382–1394CrossRefGoogle Scholar
  18. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe–wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefPubMedGoogle Scholar
  19. Ciais P, Soussana JF, Vuichard N, Luyssaert S, Don A, Janssens IA, Piao SL, Dechow R, Lathière J, Maignan F, Wattenbach M, Smith P, Ammann C, Freibauer A, Schulze ED (2010) The greenhouse gas balance of European grasslands. Biogeosci Discus 7:5997–6050CrossRefGoogle Scholar
  20. Coplen TB (2011) Guidelines and recommended terms for expression of stable–isotope–ratio and gas–ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560PubMedGoogle Scholar
  21. Davenport JR, Thomas RL (1988) Carbon partitioning and rhizodeposition in corn and bromegrass. Can J soil Sci: 693–701Google Scholar
  22. Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artefacts and biases in chamber–based measurements of soil respiration. FLUXNET 2000 Synthesis. Agric For Meteorol 113:21–37CrossRefGoogle Scholar
  23. Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A, Falge E, Noormets A, Papale D, Reichstein M, Stauch VJ (2008) Cross–site evaluation of eddy covariance GPP and RE decomposition techniques. Agric For Meteorol 148:821–838CrossRefGoogle Scholar
  24. Domanski G, Kuzyakov Y, Siniakina SV, Stahr K (2001) Carbon flows in the rhizosphere of ryegrass (Lolium perenne). J Plant Nutr Soil Sci 164:381–387CrossRefGoogle Scholar
  25. Dore S, Hymus GJ, Johnson DP, Hinkle CR, Valentini R, Drake BG (2003) Cross validation of open–top chamber and eddy covariance measurements of ecosystem CO2 exchange in a Florida scrub–oak ecosystem. Glob Chang Biol 9:84–95CrossRefGoogle Scholar
  26. Drösler M (2005) Trace gas exchange and climatic relevance of bog ecosystems, Southern Germany. PhD–Thesis, Technische Universität München, 179 pp. Online publication: urn:nbn:de:bvb:91–diss20050901–1249431017Google Scholar
  27. Eigenmann R, Metzger S, Foken T (2009) Generation of free convection due to changes of the local circulation system. Atmos Chem Phys 9:8587–8600CrossRefGoogle Scholar
  28. Falge E, Baldocchi DD, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger DY, Jensen N, Katul GG, Keronen P, Kowalski AS, Lai CT, Law BE, Meyers TP, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen JD, Tu KP, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69CrossRefGoogle Scholar
  29. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guðmundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger J, Oechel W, Paw UKT, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113:53–74CrossRefGoogle Scholar
  30. Foken T (2003) Lufthygienisch–bioklimatische Kennzeichnung des oberen Egertales (Fichtelgebirge bis Karlovy Vary). Bayreuther Forum Ökologie: 70 SGoogle Scholar
  31. Foken T, Wichura B (1996) Tools for quality assessment of surface based flux measurements. Agric For Meteorol 78:83–105CrossRefGoogle Scholar
  32. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post–field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208Google Scholar
  33. Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012) Corrections and data quality. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131CrossRefGoogle Scholar
  34. Gamnitzer U, Moyes AB, Bowling DR, Schnyder H (2011) Measuring and modelling the isotopic composition of soil respiration: insights from a grassland tracer experiment. Biogeosciences 8:1333–1350CrossRefGoogle Scholar
  35. Gavrichkova O (2009) Drivers of soil respiration of root and microbial origin in grasslands. PhD–Thesis, Università degli Studi della Tuscia. http://dspace.unitus.it/bitstream/2067/1104/1/ogavrichkova_tesid.pdf
  36. Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Clifton–Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Grünwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton MA, Tuba Z, Valentini R, Williams ML, Wohlfahrt G (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121:93–120CrossRefGoogle Scholar
  37. Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Grünwald T, Guo H, Hanan N, Haszpra L, Heilman J, Jacobs AFG, Jones MB, Johnson DA, Kiely G, Li S, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz MJ, Scott R, Soussana JF, Stoy PC, Svejcar T, Tuba Z, Zhou G (2010) Productivity, respiration, and light–response parameters of world grassland and agroecosystems derived from flux–tower measurements. Rangel Ecol Manag 63:16–39CrossRefGoogle Scholar
  38. Göckede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Flux and concentration footprints. Agric For Meteorol 127:175–188CrossRefGoogle Scholar
  39. Göckede M, Markkanen T, Hasager CB, Foken T (2006) Update of a footprint–based approach for the characterization of complex measurement sites. Bound-Layer Meteorol 118:635–655CrossRefGoogle Scholar
  40. Goulden ML, Munger JW, Fan S, Daube BC, Wofsy S (1996) Measurements of carbon sequestration by long–term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2:169–182CrossRefGoogle Scholar
  41. Gregory PJ, Atwell BJ (1991) The fate of carbon in pulse–labelled crops of barley and wheat. Plant Soil 136:205–213CrossRefGoogle Scholar
  42. Gupta SR, Singh JS (1977) Effect of alkali concentration, volume and absorption area on the measurement of soil respiration in a tropical sward. Pedobiologia: 233–239Google Scholar
  43. Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu X, Li X, Guggenberger G, Miehe G, Kuzyakov Y (2012) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Chang Biol 18:528–538CrossRefGoogle Scholar
  44. Hussain M, Grünwald T, Tenhunen J, Li Y, Mirzae H, Bernhofer C, Otieno D, Dinh N, Schmidt M, Wartinger M, Owen K (2011) Summer drought influence on CO2 and water fluxes of extensively managed grassland in Germany. Agric Ecosyst Environ 141:67–76CrossRefGoogle Scholar
  45. IPCC (2007) Climate change 2007 – the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, 996 SGoogle Scholar
  46. IUSS Working Group WRB (2007) World reference base for soil resources 2006 first update 2007. World soil resources reports no. 103. FAO, RomeGoogle Scholar
  47. Janssens IA (2003) Europe’s terrestrial biosphere absorbs 7 to 12 % of European anthropogenic CO2 emissions. Science 300:1538–1542CrossRefPubMedGoogle Scholar
  48. Johnson D, Leake JR, Ostle NJ, Ineson P, Read DJ (2002) In situ 13CO2 pulse–labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334CrossRefGoogle Scholar
  49. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33CrossRefGoogle Scholar
  50. Joos O, Hagedorn F, Heim A, Gilgen AK, Schmidt MWI, Siegwolf RTW, Buchmann N (2010) Summer drought reduces total and litter–derived soil CO2 effluxes in temperate grassland – clues from a 13C litter addition experiment. Biogeosciences 7:1031–1041CrossRefGoogle Scholar
  51. Kaštovská E, Šantrůčková H (2007) Fate and dynamics of recently fixed C in pasture plant–soil system under field conditions. Plant Soil 300:61–69CrossRefGoogle Scholar
  52. Kayler Z, Ganio L, Hauck M, Pypker TG, Sulzman EW, Mix AC, Bond B.J (2010) Bias and uncertainty of δ13CO2 isotopic mixing models. Oecologia: 227–234Google Scholar
  53. Keith H, Oades JM, Martin JK (1986) Input of carbon to soil from wheat plants. Soil Biol Biochem 18:445–449CrossRefGoogle Scholar
  54. Kirita H (1971) Re–examination of the absorption method of measuring soil respira tion under field conditions III. Combined effect of the covered ground area and the surface area of KOH solution on CO2–absorption rates. J J Ecol: 37–42Google Scholar
  55. Knapp AK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298:2202–2205CrossRefPubMedGoogle Scholar
  56. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448CrossRefGoogle Scholar
  57. Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci: 421–431Google Scholar
  58. Kuzyakov Y, Schneckenberger K (2004) Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Arch Agron Soil Sci 50:115–132CrossRefGoogle Scholar
  59. Kuzyakov Y, Kretzschmar A, Stahr K (1999) Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil. Plant Soil 213:127–136CrossRefGoogle Scholar
  60. Kuzyakov Y, Ehrensberger H, Stahr K (2001) Carbon partitioning and below–ground translocation by Lolium perenne. Soil Biol Biochem 33:61–74CrossRefGoogle Scholar
  61. Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy PC, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Chang Biol 16:187–208CrossRefGoogle Scholar
  62. Leake JR, Ostle NJ, Rangel–Castro I, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse–labelling in an upland grassland. Appl Soil Ecol 33:152–175CrossRefGoogle Scholar
  63. Leifeld J, Zimmermann M, Fuhrer J, Conen F (2009) Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Glob Chang Biol 15:668–679CrossRefGoogle Scholar
  64. Li M, Babel W, Tanaka K, Foken T (2013) Note on the applifcation of planar–fit rotation for non–omnidirectional sonic anemometers. Atmos Meas Techn: 221–229Google Scholar
  65. Lloyd J, Taylor J (1994) On the temperature dependence of soil respiration. Funct. Ecol.: 315–323Google Scholar
  66. Lundegardh H (1921) Ecological studies in the assimilation of certain forest plants and shore plants. Svensk Botaniska Tidskrift: 46–94Google Scholar
  67. Luo Y (2007) Terrestrial carbon–cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712CrossRefGoogle Scholar
  68. Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta–analysis. Ecology 87:53–63CrossRefPubMedGoogle Scholar
  69. Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2, Univ. Bayreuth, Abt. Mikrometeorol., ISSN: 1614–89166, 26, 42 ppGoogle Scholar
  70. Mauder M, Foken T (2011) Documentation and instruction manual of the eddy covariance software package TK3. Universität Bayreuth, Abt. Mikrometeorologie, Print, ISSN 1614–8916, Univ. Bayreuth, Abt. Mikrometeorol., ISSN: 1614–89166, 46, 58 ppGoogle Scholar
  71. Mauder M, Liebethal C, Göckede M, Leps J, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS–2003. Bound-Layer Meteorol 121:67–88CrossRefGoogle Scholar
  72. Mauder M, Oncley SP, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, Bruin HAR, Liu H (2007) The energy balance experiment EBEX–2000. Part II: intercomparison of eddy–covariance sensors and post–field data processing methods. Bound-Layer Meteorol 123:29–54CrossRefGoogle Scholar
  73. Mauder M, Foken T, Clement R, Elbers JA, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data – part 2: inter–comparison of eddy–covariance software. Biogeosciences 5:451–462CrossRefGoogle Scholar
  74. McDermitt DK, Welles JM, Eckles RD (1993) Effects of temperature, pressure and water vapor on gas phase infrared absorption by CO2. application note # 116. Li–COR, LincolnGoogle Scholar
  75. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung, Kinetics of the invertin reaction. Biochemische Zeitschrift: 333–369Google Scholar
  76. Miller J, Tans PP (2003) Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B: 207–214Google Scholar
  77. Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui D, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007) Comprehensive comparison of gap–filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–232CrossRefGoogle Scholar
  78. Moncrieff J, Valentini R, Greco S, Seufert G, Ciccioli P (1997) Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology. J Exp Bot 48:1133–1142CrossRefGoogle Scholar
  79. Nguyen C (2009) Rhizodeposition of organic C by plant: mechanisms and controls. J Sustain Agric: 97–123Google Scholar
  80. Ostle NJ, Ineson P, Benham D, Sleep D (2000) Carbon assimilation and turnover in grassland vegetation using an in situ13CO2 pulse labelling system. Rapid Commun Mass Spectrom 14:1345–1350CrossRefPubMedGoogle Scholar
  81. Papale D (2012) Data gap filling. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 159–172CrossRefGoogle Scholar
  82. Pausch J, Kuzyakov Y (2012) Soil organic carbon decomposition from recently added and older sources estimated by δ13C values of CO2 and organic matter. Soil Biol Biochem: 40–47Google Scholar
  83. Rangel–Castro I, Prosser JI, Scrimgeour CM, Smith P, Ostle NJ, Ineson P, Meharg A, Killham K (2004) Carbon flow in an upland grassland: effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Glob Chang Biol 10:2100–2108CrossRefGoogle Scholar
  84. Rannik Ü, Sogachev A, Foken T, Göckede M, Kljun N, Leclerc MY, Vesala T (2012) Footprint analysis. In: Aubinet M, Vesala T, Papale D (eds) Covariance: a practical guide to measurement and data analysis. Springer, Netherlands, pp 211–261CrossRefGoogle Scholar
  85. Rattray EAS, Paterson E, Killham K (1995) Characterisation of the dynamics of C–partitioning within Lolium perenne and to the rhizosphere microbial biomass using 14C pulse chase. Biol Fertil Soils 19:280–286CrossRefGoogle Scholar
  86. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439CrossRefGoogle Scholar
  87. Reichstein M, Stoy PC, Desai AR, Lasslop G, Richardson AD (2012) Partitioning of net fluxes. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Partitioning of net fluxes. Springer, Dordrecht, pp 263–289CrossRefGoogle Scholar
  88. Rochette P, Hutchinson GL (2005) Measurement of soil respiration in situ: chamber techniques. In: Hatfield JL, Baker JM (eds) Micrometeorology in agricultural systems. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, MadisonGoogle Scholar
  89. Ruppert J, Mauder M, Thomas C, Lüers J (2006) Innovative gap–filling strategy for annual sums of CO2 net ecosystem exchange. Agric For Meteorol 138:5–18CrossRefGoogle Scholar
  90. Saggar S, Hedley C (2001) Estimating seasonal and annual carbon inputs, and root decomposition rates in a temperate pasture following field 14C pulse–labelling. Plant Soil 236:91–103CrossRefGoogle Scholar
  91. Saggar S, Hedley C, Mackay AD (1997) Partitioning and translocation of photosynthetically fixed 14 C in grazed hill pastures. Biol Fertil Soils 25:152–158CrossRefGoogle Scholar
  92. Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Börner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace–gas fluxes. Glob Chang Biol 16:1451–1469CrossRefGoogle Scholar
  93. Singh J, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial eco–systems. Bot Rev: 450–511Google Scholar
  94. Sokal RR, Rohlf FJ (2008) Biometry, 4th edn. W.H. Freeman, New YorkGoogle Scholar
  95. Staddon PL (2003) The speed of soil carbon throughput in an upland grassland is increased by liming. J Exp Bot 54:1461–1469CrossRefPubMedGoogle Scholar
  96. Stoy PC, Katul GG, Siqueira MB, Juang J, Novick KA, Uebelherr JM, Oren R (2006) An evaluation of models for partitioning eddy covariance–measured net ecosystem exchange into photosynthesis and respiration. Agric For Meteorol 141:2–18CrossRefGoogle Scholar
  97. Subke J, Tenhunen JD (2004) Direct measurements of CO2 flux below a spruce forest canopy. Agric For Meteorol 126:157–168CrossRefGoogle Scholar
  98. Subke J, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009) Short–term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of a boreal pine forest. New Phytol 183:349–357CrossRefPubMedGoogle Scholar
  99. Swinnen J, van Veen JA, Merckx R (1994) 14C pulse–labelling of field–grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biol Biochem 26:161–170CrossRefGoogle Scholar
  100. Todorovic C, Nguyen C, Robin C, Guckert A (1999) 14C–assimilate partitioning within white clover plant–soil system: effects of photoperiod/temperature treatments and defoliation. Eur J Agron 11:13–21CrossRefGoogle Scholar
  101. Unteregelsbacher S, Hafner S, Guggenberger G, Miehe G, Xu X, Liu J, Kuzyakov Y (2011) Response of long–, medium– and short–term processes of the carbon budget to overgrazing–induced crusts in the Tibetan Plateau. BiogeochemistryGoogle Scholar
  102. van Ginkel J, Gorissen A, van Veen JA (1997) Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics. Plant Soil 188:299–308Google Scholar
  103. Vesala T, Kljun N, Rannik Ü, Rinne J, Sogachev A, Markkanen T, Sabelfeld K, Foken T, Leclerc M (2008) Flux and concentration footprint modelling: state of the art. Environ Pollut 152:653–666CrossRefPubMedGoogle Scholar
  104. Werth M, Kuzyakov Y (2008) Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C. Soil Biol Biochem 40(3):625–637. doi: 10.1016/j.soilbio.2007.09.022
  105. Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. John Wiley, Chichester, pp 59–97Google Scholar
  106. Wichura B (2009) Untersuchungen zum Kohlendioxid–Austausch über einem Fichtenwaldbestand auf der Grundlage von Hyperbolic–Relaxed–Eddy–Accumulation Messungen für das stabile Kohlenstoffisotop 13C und von Wavelletanalysen. Dissertation. Bayreuther Forum Ökologie, Band 114, 324 SGoogle Scholar
  107. Wohlfahrt G, Hammerle A, Haslwanter A, Bahn M, Tappeiner U, Cernusca A (2008) Seasonal and inter–annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of weather and management. J Geophys Res 113:1–14Google Scholar
  108. Wohlfahrt G, Klumpp K, Soussana JF (2012) Eddy covariance measurements over grasslands. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 333–344CrossRefGoogle Scholar
  109. Wu Y, Tan H, Deng Y, Wu J, Xu X, Wang Y, Tang Y, Higashi T, Cui X (2010) Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai–Tibetan Plateau revealed by field 13C pulse–labeling. Glob Chang Biol 16:2322–2333CrossRefGoogle Scholar
  110. Yakir D, Sternberg LSL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123:297–311CrossRefGoogle Scholar
  111. Zobitz J, Keener JP, Schnyder H, Bowling DR (2006) Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agric For Meteorol: 56–75Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MicrometeorologyUniversity of BayreuthBayreuthGermany
  2. 2.Department of Soil Science of Temperate EcosystemsUniversity of GöttingenGöttingenGermany
  3. 3.Member of Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  4. 4.Regensburg Center of Energy and ResourcesRegensburg University of Applied SciencesRegensburgGermany

Personalised recommendations