Plant and Soil

, Volume 388, Issue 1–2, pp 351–366 | Cite as

Aboveground fungal endophyte infection in tall fescue alters rhizosphere chemical, biological, and hydraulic properties in texture-dependent ways

  • Fatemeh Hosseini
  • Mohammad R. Mosaddeghi
  • Mohammad A. Hajabbasi
  • Mohammad R. Sabzalian
Regular Article


Background and aims

Information regarding the influence of endophyte-tall fescue symbiosis on soil hydraulic properties is rare. The hypothesis in this study was that the presence of Epichloë coenophialum in the tall fescue shoot may alter chemical and biological properties of rhizospheric soil and, as a consequence, the soil hydraulic properties and aggregate stability in texture-dependent ways.


A greenhouse pot experiment was conducted to characterize the effects of endophyte-tall fescue symbiosis on water repellency and hydraulic properties of the rhizosphere in six soil types. Aggregate water/ethanol sorptivities and water repellency were determined using a tension micro-infiltrometer. Soil organic carbon, hot-water soluble carbohydrates, basal soil respiration and water-dispersible clay as an index of aggregate instability were also measured.


Endophytic symbiosis greatly enhanced soil organic carbon pools and hot-water soluble carbohydrates, especially for the medium- to fine-textured soils, and decreased the basal soil respiration. Changes in chemical and biological properties of the rhizosphere via endophyte infection and soil type altered the soil water repellency, hydraulic properties, and aggregate stability. Lower water sorptivity (due to hydrophobic coatings) and higher ethanol sorptivity (due to altered pore structure) were responsible for greater water repellency in the rhizosphere of endophyte-infected plants compared to endophyte-free ones.


Greater sub-critical water repellency, organic carbon, and hot-water soluble carbohydrates induced by endophyte-tall fescue symbiosis could increase aggregate stability of the rhizosphere and facilitate ecosystem restoration in degraded arid lands.


Endophyte Soil organic carbon Hot-water soluble carbohydrates Rhizosphere Ethanol sorptivity Water sorptivity Water repellency index 



We would like to thank Isfahan University of Technology for the financial support of the study. Special appreciation is extended to Prof. M.B. Kirkham of Kansas State University, USA for improvement of the English.


  1. Aelamanesh P, Mosaddeghi MR, Mahboubi AA, Ahrens B, Safari Sinegani AA (2014) Water repellency in calcareous soils under different land uses, western Iran. Pedosphere 24(3):378–390CrossRefGoogle Scholar
  2. Amini F, Mirlohi A, Majidi MM, Shojaiefar S, Kolliker R (2011) Improved polycross breeding of tall fescue through marker-based parental selection. Plant Breed 130:701–707. doi: 10.1111/j.1439-0523.2011.01884.x CrossRefGoogle Scholar
  3. Bongiovanni MD, Lobartini JC (2006) Particulate organic matter, carbohydrate, humic acid contents in soil macro-and microaggregates as affected by cultivation. Geoderma 136:660–665. doi: 10.1016/j.geoderma.2006.05.002 CrossRefGoogle Scholar
  4. Brink RH Jr, Dubach P, Lynch DL (1960) Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci 89:157–166CrossRefGoogle Scholar
  5. Brubaker SC, Holzhey CS, Brasher BR (1992) Estimating the water-dispersible clay content of soils. Soil Sci Soc Am J 56:1226–1232CrossRefGoogle Scholar
  6. Burt R, Reinsch TG, Miller WP (1993) A micro-pipette method for water dispersible clay. Commun Soil Sci Plant Anal 24:2531–2544. doi: 10.1080/00103629309368975 CrossRefGoogle Scholar
  7. Canasveras JC, Barron V, Del Campillo MC, Torrent J, Gómez JA (2010) Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma 158:78–84. doi: 10.1016/j.geoderma.2009.09.004 CrossRefGoogle Scholar
  8. Capriel P (1997) Hydrophobicity of organic matter in arable soils: influence of management. Eur J Soil Sci 48:457–462. doi: 10.1111/j.1365-2389.1997.tb00211.x CrossRefGoogle Scholar
  9. Chan KY (1992) Development of seasonal water repellence under direct drilling. Soil Sci Soc Am J 56:326–329. doi: 10.2136/sssaj1992.03615995005600010054x CrossRefGoogle Scholar
  10. Chen CR, Condron LM, Davis MR, Sherlock RR (2000) Effects of afforestation on phosphorus and biological properties in a New Zealand grassland soil. Plant Soil 220:151–163. doi: 10.1023/A:1004712401721 CrossRefGoogle Scholar
  11. Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J 64:1479–1486. doi: 10.2136/sssaj2000.6441479x CrossRefGoogle Scholar
  12. Cosentino D, Hallett PD, Michel JC, Chenu C (2010) Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue? Geoderma 159:221–227. doi: 10.1016/j.geoderma.2010.07.015 CrossRefGoogle Scholar
  13. Czarnes S, Hallett PD, Bengough AG, Young IM (2000) Root- and microbial-derived mucilages affect soil structure and water transport. Eur J Soil Sci 51:435–443. doi: 10.1046/j.1365-2389.2000.00327.x CrossRefGoogle Scholar
  14. De Gryze S, Jassogne L, Bossuyt H, Six J, Merckx R (2006) Water repellence and soil aggregate dynamics in a loamy grassland soil as affected by texture. Eur J Soil Sci 57:235–246. doi: 10.1111/j.1365-2389.2005.00733.x CrossRefGoogle Scholar
  15. Doerr SH, Thomas AD (2000) The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. J Hydrol 231:134–147. doi: 10.1016/S0022-1694(00)00190-6 CrossRefGoogle Scholar
  16. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  17. Etana A, Rydberg T, Arvidsson J (2009) Readily dispersible clay and particle transport in five Swedish soils under long-term shallow tillage and mouldboard ploughing. Soil Tillage Res 106:79–84. doi: 10.1016/j.still.2009.09.016 CrossRefGoogle Scholar
  18. Feeney DS, Hallett PD, Rodger S, Bengough AG, White NA, Young IM (2006) Impact of fungal and bacterial biocides on microbial induced water repellency in arable soil. Geoderma 135:72–80. doi: 10.1016/j.geoderma.2005.11.007 CrossRefGoogle Scholar
  19. Franzluebbers AJ (1999) Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture. Soil Biol Biochem 31:1083–1090. doi: 10.1016/S0038-0717(99)00022-X CrossRefGoogle Scholar
  20. Franzluebbers AJ (2006) Short-term responses of soil C and N fractions to tall fescue endophyte infection. Plant Soil 282:153–164. doi: 10.1007/s11104-005-5447-6 CrossRefGoogle Scholar
  21. Franzluebbers AJ, Stuedemann JA (2002) Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA. Environ Pollut 116:S53–S62. doi: 10.1016/S0269-7491(01)00247-0 CrossRefPubMedGoogle Scholar
  22. Franzluebbers AJ, Stuedemann JA (2005) Soil carbon and nitrogen pools in response to tall fescue endophyte infection, fertilization, and cultivar. Soil Sci Soc Am J 69:396–403. doi: 10.2136/sssaj2005.0396 Google Scholar
  23. Franzluebbers AJ, Haney RL, Hons FM, Zuberer DA (1996) Active fractions of organic matter in soils with different texture. Soil Biol Biochem 28:1367–1372. doi: 10.1016/S0038-0717(96)00143-5 CrossRefGoogle Scholar
  24. Franzluebbers AJ, Nazih N, Stuedemann JA, Fuhrmann JJ, Schomberg HH, Hartel PG (1999) Soil carbon and nitrogen pools under low-and high-endophyte-infected tall fescue. Soil Sci Soc Am J 63:1687–1694. doi: 10.2136/sssaj1999.6361687x CrossRefGoogle Scholar
  25. Gami SK, Lauren JG, Duxbury JM (2009) Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains. Geoderma 153:304–311. doi: 10.1016/j.geoderma.2009.08.003 CrossRefGoogle Scholar
  26. Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Agronomy Monograph, 9, 2nd edn. ASA/SSSA, Madison, pp 383–411Google Scholar
  27. Ghani A, Dexter M, Perrott KW (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243. doi: 10.1016/S0038-0717(03)00186-X CrossRefGoogle Scholar
  28. Hallett PD (2007) An introduction to soil water repellency. In Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals Vol. 6, p. 9Google Scholar
  29. Hallett PD, Young IM (1999) Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur J Soil Sci 50:35–40. doi: 10.1046/j.1365-2389.1999.00214.x CrossRefGoogle Scholar
  30. Hallett PD, Gordon DC, Bengough AG (2003) Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol 157:597–603. doi: 10.1046/j.1469-8137.2003.00690.x CrossRefGoogle Scholar
  31. Hallett PD, Feeney DS, Bengough AG, Rillig MC, Scrimgeour CM, Young IM (2009) Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314:183–196. doi: 10.1007/s11104-008-9717-y CrossRefGoogle Scholar
  32. Handayani IP, Coyne MS, Phillips TD (2011) Soil organic carbon fractions differ in two contrasting tall fescue systems. Plant Soil 338:43–50. doi: 10.1007/s11104-010-0352-z CrossRefGoogle Scholar
  33. Hassink J (1994) Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization. Soil Biol Biochem 26:1221–1231. doi: 10.1016/0038-0717(94)90147-3 CrossRefGoogle Scholar
  34. Igwe CA, Udegbunam ON (2008) Soil properties influencing water-dispersible clay and silt in an Ultisol in southern Nigeria. Int Agrophys 22:319–325Google Scholar
  35. Iqbal J, Siegrist JA, Nelson JA, McCulley RL (2012) Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biol Biochem 44:81–92. doi: 10.1016/j.soilbio.2011.09.010 CrossRefGoogle Scholar
  36. Jensen C, Stougaard B, Ostergaard HS (1994) Simulation of nitrogen dynamics in farmland areas of Denmark (1989–1993). Soil Use Manag 10:111–118. doi: 10.1111/j.1475-2743.1994.tb00470.x CrossRefGoogle Scholar
  37. Jindaluang W, Kheoruenromne I, Suddhiprakarn A, Singh BP, Singh B (2013) Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soils of Thailand. Geoderma 195:207–219. doi: 10.1016/j.geoderma.2012.12.003 CrossRefGoogle Scholar
  38. Kaplan DI, Bertsch PM, Adriano DC (1997) Mineralogical and physicochemical differences between mobile and non-mobile colloidal phases in reconstructed pedons. Soil Sci Soc Am J 61:641–649CrossRefGoogle Scholar
  39. Kawamoto K, Moldrup P, Komatsu T, De Jonge LW, Oda M (2007) Water repellency of aggregate size fractions of a volcanic ash soil. Soil Sci Soc Am J 71:1658–1666. doi: 10.2136/sssaj2006.0284 CrossRefGoogle Scholar
  40. Kostka SJ (2000) Amelioration of water repellency in highly managed soils and the enhancement of turfgrass performance through the systematic application of surfactants. J Hydrol 231:359–368. doi: 10.1016/S0022-1694(00)00208-0 CrossRefGoogle Scholar
  41. Leeds-Harrison PB, Youngs EG, Uddin B (1994) A device for determining the sorptivity of soil aggregates. Eur J Soil Sci 45:269–272Google Scholar
  42. Lipiec J, Walczak R, Witkowska-Walczak B, Nosalewicz A, Slowinska-Jurkiewicz A, Slawinski C (2007) The effect of aggregate size on water retention and pore structure of two silt loam soils of different genesis. Soil Tillage Res 97:239–246. doi: 10.1016/j.still.2007.10.001 CrossRefGoogle Scholar
  43. Lipiec J, Wojciga A, Horn R (2009) Hydraulic properties of soil aggregates as influenced by compaction. Soil Tillage Res 103:170–177. doi: 10.1016/j.still.2008.10.021 CrossRefGoogle Scholar
  44. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940. doi: 10.2135/cropsci2000.404923x CrossRefGoogle Scholar
  45. Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126. doi: 10.1023/A:1026518828237 CrossRefGoogle Scholar
  46. Ontl TA, Hofmockel KS, Cambardella CA, Schulte LA, Kolka RK (2013) Topographic and soil influences on root productivity of three bioenergy cropping systems. New Phytol 199:727–737. doi: 10.1111/nph.12302 CrossRefPubMedGoogle Scholar
  47. Peng X, Zhang B, Zhao Q, Horn R, Hallett PD (2003) Influence of types of restorative vegetation on the wetting properties of aggregates in a severely degraded clayey Ultisol in subtropical China. Geoderma 115:313–324. doi: 10.1016/S0016-7061(03)00085-5 CrossRefGoogle Scholar
  48. Philip JR (1969) Theory of infiltration. Adv Hydrosci 5:216–291Google Scholar
  49. Piccolo A, Mbagwu JS (1999) Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Sci Soc Am J 63:1801–1810. doi: 10.2136/sssaj1999.6361801x CrossRefGoogle Scholar
  50. Ratnayake RR, Seneviratne G, Kulasooriya SA (2013) Effect of soil carbohydrates on nutrient availability in natural forests and cultivated lands in Sri Lanka. Eurasian Soil Sci 46:579–586. doi: 10.1134/S1064229313050177 CrossRefGoogle Scholar
  51. Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM, Young IM, Zhang K, Zhang X (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326. doi: 10.1046/j.1469-8137.2003.00665.x CrossRefGoogle Scholar
  52. Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol Biochem 42:1189–1191. doi: 10.1016/j.soilbio.2010.03.027 CrossRefGoogle Scholar
  53. Sabzalian RM, Mirlohi A (2010) Neotyphodium endophytes trigger salt resistance in tall and meadow fescues. J Plant Nutr Soil Sci 173:952–957. doi: 10.1002/jpln.200900345 CrossRefGoogle Scholar
  54. Saha DC, Jackson MA, Johnson-Cicalese JM (1988) A rapid staining method for detection of endophytic fungi in turf and forage grasses. Phytopathology 78:237–239CrossRefGoogle Scholar
  55. Shaver TM, Peterson GA, Ahuja LR, Westfall DG (2013) Soil sorptivity enhancement with crop residue accumulation in semiarid dryland no-till agroecosystems. Geoderma 192:254–258. doi: 10.1016/j.geoderma.2012.08.014 CrossRefGoogle Scholar
  56. Sims JT (1996) Lime requirement. In: Sparks DL, Page AL, Helmke PA, Loeppert PN, Soltanpour PN, Tabatabai MA, Johnson CT, Sumner ME (eds) Soil science society of America book series number 5, 2nd edn. ASA and SSSA, Madison, pp 491–515Google Scholar
  57. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San DiegoGoogle Scholar
  58. Sobhani Najafabadi A, Mofid MR, Mohammadi R, Moghim S (2011) Quantification of ergovaline using HPLC and mass spectrometry in Iranian Neotyphodium infected tall fescue. Res Pharm Sci 5:135–143Google Scholar
  59. Spaccini R, Piccolo A, Conte P, Haberhauer G, Gerzabek MH (2002) Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol Biochem 34:1839–1851. doi: 10.1016/S0038-0717(02)00197-9 CrossRefGoogle Scholar
  60. Sparling G, Vojvodic-Vukovic M, Schipper LA (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biol Biochem 30:1469–1472. doi: 10.1016/s0038-0717(98)00040-6 CrossRefGoogle Scholar
  61. Tehrani MS, Mardi M, Sahebi J, Catalan P, Diaz-Perez A (2009) Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis. Plant Syst Evol 282:57–70. doi: 10.1007/s00606-009-0207-3 CrossRefGoogle Scholar
  62. Tillman RW, Scotter DR, Wallis MG, Clothier BE (1989) Water repellency and its measurement by using intrinsic sorptivity. Aust J Soil Res 27:637–644. doi: 10.1071/SR9890637 CrossRefGoogle Scholar
  63. Uchida Y, Nishimura S, Akiyama H (2012) The relationship of water-soluble carbon and hot-water-soluble carbon with soil respiration in agricultural fields. Agric Ecosyst Environ 156:116–122. doi: 10.1016/j.agee.2012.05.012 CrossRefGoogle Scholar
  64. Urbanek E, Hallett PD, Feeney D, Horn R (2007) Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma 140:147–155. doi: 10.1016/j.geoderma.2007.04.001 CrossRefGoogle Scholar
  65. Van Hecke MM, Treonis AM, Kaufman JR (2005) How does the fungal endophyte Neotyphodium coenophialum affect tall fescue (Festuca arundinacea) rhizodeposition and soil microorganisms? Plant Soil 275:101–109. doi: 10.1007/s11104-005-0380-2 CrossRefGoogle Scholar
  66. Vogelmann ES, Reichert JM, Reinert DJ, Mentges MI, Vieira DA, De Barros CAP, Fasinmirin JT (2010) Water repellency in soils of humid subtropical climate of Rio Grande do Sul, Brazil. Soil Tillage Res 110:126–133. doi: 10.1016/j.still.2010.07.006 CrossRefGoogle Scholar
  67. Vogelmann ES, Reichert JM, Prevedello J, Awe GO, Mataix-Solera J (2013a) Can occurrence of soil hydrophobicity promote the increase of aggregates stability? Catena 110:24–31. doi: 10.1016/j.catena.2013.06.009 CrossRefGoogle Scholar
  68. Vogelmann ES, Reichert JM, Prevedello J, Awe GO (2013b) Hydro-physical processes and soil properties correlated with origin of soil hydrophobicity. Cienc Rural 43:1582–1589. doi: 10.1590/S0103-84782013005000107 CrossRefGoogle Scholar
  69. Vogelmann ES, Reichert JM, Prevedello J, Consensa COB, Oliveira AE, Awe GO, Mataix-Solera J (2013c) Threshold water content beyond which hydrophobic soils become hydrophilic: the role of soil texture and organic matter content. Geoderma 209:177–187. doi: 10.1016/j.geoderma.2013.06.019 CrossRefGoogle Scholar
  70. Wahl NA (2008) Variability of water repellency in sandy forest soils under broadleaves and conifers in north-western Jutland/Denmark. Soil Water Res 3:S155–S164Google Scholar
  71. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  72. Wallis MG, Horne DJ (1992) Soil water repellency. In: Advances in soil science. Springer New York. pp. 91–146. doi: 10.1007/978-1-4612-2930-8_2
  73. Wang WJ, Dalal RC, Moody PW, Smith CJ (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35:273–284. doi: 10.1016/S0038-0717(02)00274-2 CrossRefGoogle Scholar
  74. Woche SK, Goebel MO, Kirkham MB, Horton R, Van der Ploeg RR, Bachmann J (2005) Contact angle of soils as affected by depth, texture, and land management. Eur J Soil Sci 56:239–251. doi: 10.1111/j.1365-2389.2004.00664.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fatemeh Hosseini
    • 1
  • Mohammad R. Mosaddeghi
    • 1
  • Mohammad A. Hajabbasi
    • 1
  • Mohammad R. Sabzalian
    • 2
  1. 1.Department of Soil Science, College of AgricultureIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Agronomy and Plant Breeding, College of AgricultureIsfahan University of TechnologyIsfahanIran

Personalised recommendations